Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2023 Course: Post-Harvest Engineering Semester: 3 3 Program: B.Tech (Food Technology) Duration: 3 Hours Course Code: HSFT2001 Max. Marks: 100 Instructions: Attend all the sections.			
S. No.	Section A Short answer questions/ MCQ/T\&F $\text { (20Qx1.5M= } 30 \text { Marks) }$	Marks	COs
Q 1			
1	Angle between the horizontal and inclination of heap is called \qquad (A) Angle of repose (B) Angle of internal friction (C) Angle of external friction (D) Angle of friction	1.5	CO 1
2	Rheological properties of material can be described by which property. (A) Elasticity (B) Plasticity (C) Viscosity (D) All of the above	1.5	CO 1
3	Angle of repose \qquad with the increase of increase content of material. (A) Increase (B) Decrease (C) Constant (D) None of these	1.5	CO 1
4	Thermal diffusivity can be expressed as (A) UA ΔT (B)-KA/($\Delta T / \Delta X$) (C) $m C p \Delta T$ (D) $K / \rho C p$	1.5	CO 1
5	Unit of specific heat is (A) $\mathrm{kJ} / \mathrm{kg} \mathrm{K} \mathrm{(B)} \mathrm{W/mk} \mathrm{(C)} \mathrm{W/m2k} \mathrm{(D)} \mathrm{~kg} / \mathrm{kJ} \mathrm{m}$	1.5	CO 1
6	Latent heat is a \qquad properties (A) Thermal (B) Electrical (C) Biological (D) Physical	1.5	CO 1
7	Units for thermal conductivity (A) J/kg.K (B) J/mol.K (C) J.ohm/sec.K2 (D) W/m.K	1.5	CO 2
8	Specific gravity of grains is determined by \qquad (A) Pycnometer (B) Toluene displacement method (C) Refract meter (D) None of these	1.5	CO 2
9	Moisture content dry basis is \qquad (A) $\mathrm{M} \mathrm{db}=(\mathrm{Ww} / \mathrm{Wd}) * 100$ (B) $\mathrm{M} \mathrm{wb}=(\mathrm{Ww} / \mathrm{Wd}) * 100$ (C) $\mathrm{Mwb}=(\mathrm{Ww} / \mathrm{Ww}+\mathrm{Wd}) * 100$ (D) $\mathrm{M} \mathrm{db}=(\mathrm{Ww} / \mathrm{Ww}+\mathrm{Wd}) * 100$	1.5	CO 2
10	For a black body the transmissivity is \qquad (A) Zero (B) One (C) Nil (D) Above one	1.5	CO 2
11	Define EMC.	1.5	CO 2

12	What is hysteresis effect?	1.5	CO 2
13	What is dry basis and wet basis moisture content?	1.5	CO 2
14	Define degree of grinding?	1.5	CO 3
15	Differentiate between head rice and broken rice.	1.5	CO 3
16	For grain conveying, the belt speed of \qquad m / s is recommended.	1.5	CO 3
17	What do you mean by psychrometric chart?	1.5	CO 3
18	In deep bed dryer, the layer of grains is more than ___ cm.	1.5	CO 3
19	In CFTRI rice parboiling method, the paddy is soaked at \qquad for \qquad time.	1.5	CO 3
20	What is the role of rubber-roll sheller?	1.5	CO 3
$\begin{gathered} \text { Section B } \\ (4 Q \times 5 \mathrm{M}=20 \text { Marks }) \end{gathered}$			
Q 1			
1	What is terminal velocity? Derive expression for terminal velocity?	5	CO 1
2	Discuss the types of air flow in mechanical drying system.	5	CO 2
3	Differentiate between crushing efficiency and milling efficiency.	5	CO 3
4	Discuss the process of parboiling. Enlist the advantages of parboiling.	5	CO 3
$\begin{gathered} \text { Section C } \\ \text { (2Qx15M=30 Marks) } \end{gathered}$			
Q 1			
1	Discuss the following drying equipment in details. (Any three) (a) Freeze dryer (b) Rotary Dryer (c) LSU dryer (d) Fluidized dryer	15	CO 4
2	Discuss the working operation of the following conveying equipment. (Any three) (a) Bucket elevator (b) Belt conveyor (c) Screw conveyor (d) Pneumatic conveyor	15	CO 5
Section D(2Qx10M=20 Marks)			
Q 1			
1	Discuss the following Laws used in size reduction principle. (a) Rittinger's law (b) Kick's Law (c) Bond's Law	10	CO 4
2	What is the role of rice polishers. Discuss about vertical polisher and horizontal polisher with a net diagram.	10	CO 5

