Name	:					
Enrol	ment No:					
	UNIVERSITY OF PETRO	LEUM AND ENERGY STUDIE	CS			
		Examination, Dec 2023				
Progr	Programme Name: B. Tech. (Biotech) Semester					
0	Course Name : Process Calculations Time					
	Course Code : HSBT2003 Max. Marks					
	of page(s) : 03					
Instru		raw the diagrams, wherever necessary. $0 \text{ Q} \times 1.5 \text{M} = 30 \text{ marks}$)				
		all the questions)				
			Marks	CO		
1	What is the equivalent temperature of 933°R	in °C, °F and K.	1.5	CO1		
2	If your automobile tire takes a pressure of		1.5	C01		
	atmospheric and Kpa?					
3		oscarbic acid is as shown below.	1.5	CO1		
	How many gmol of this	compound contained in 20 grams?				
	H C C O C O					
4	$CaCO_3$	f carbon dioxide is produced when we burn	1.5	C01		
	100 kg limestone.	1				
5	A water-soaked cloth is dried from 32 to 5%.	1.5	CO1			
(82 kg of wet cloth.	1.7	001			
6	Mass that a cube contains is 40 gm and has si material inside the cube in kg/m ³ ?	de length of 1 cm. What is the density of the	1.5	CO1		
7	What is the molar flow rate of sodium solution	1.5	C01			
	20 seconds.	(1), 5				
8	What is the percent by weight of C in CO ₂ ?	1.5	C01			
9	In 13 kg water, how many lb moles of water a	1.5	CO1			
10	What is the weight fraction of N2 in a mixtur	e of N_2 and CO_2 with a mole ratio 1:2.	1.5	CO1		
11	What is latent heat of condensation?		1.5	CO1		
12	Convert 15 Btu/hr.ft2 °F to cal/s.cm2 °C.		1.5	CO2		
13	What is the volume of 25 kg of chlorine gas a	nt NTP?	1.5	CO2		
14	Convert 5 cal/gm °C to kJ/g °C and 875°F to		1.5	CO2		
15	State ideal gas law.	1.5	CO2			
16	Convert 499 g of CuSO ₄ .5H ₂ O into moles.		1.5	CO2		
17	What is limiting reactant?	1.5	CO2			

18	What is steady state? Explain.	1.5	CO2	
19	Explain Dalton's law.	1.5	CO2	
20	Define selectivity	1.5	CO2	
	SECTION-B (4 Q× 5M = 20 marks)			
	(Answer all the questions)		1	
21	A flue gas analyzes $H_2=22$ $Cl_2 = 14$ % $CO = 51$ % and $O_2 = 13$ % by volume. Find (i) Composition of the gas mixture by weight % (ii) Density of the gas mixture in lb/ft ³ at $180^{\circ}F \& 760 \text{ mm Hg}$.	5	CO1	
22	Aluminum reacts with chlorine gas to form aluminum chloride via the following reaction: $2Al + 3Cl_2> 2AlCl_3$. If 34 g of aluminum and 39 g of chlorine gas are used find limiting reactant and calculate % excess reactant.	5	CO2	
23	The Orsat analysis of the flue gases from a boiler house chimney gives CO_2 :11.4%, O_2 :4.2% and N_2 :84.4% (mole%). Assuming that complete combustion has taken place, (a) Calculate the % excess air, and (b) find the C:H ratio in the fuel.	5	CO3	
24	The heat capacity of silicon carbide is given by $Cp=37.221+1.22x10^{-2} T-1.189x10^5 T^{-2}$ where Cp is in KJ/kmol K and T is in K. Estimate the enthalpy change in silicon carbide in the range 0 to 1000 K.	5	CO4	
	SECTION-C (2 Q× 10M = 20 marks)			
25	(Answer all the questions) The solubility of barium nitrate [Ba(NO ₃) ₂] in water at 373 and 273K are 34 g		1	
	 [Ba(NO₃)₂]/100 g water and 5 g [Ba(NO₃)₂]/100 g water, respectively. If the saturated solution at 373 K is cooled to 273 K, a) if 200 g of crystals precipitate out, what is the weight of the initial solution at 373K. b) What is the composition of the residual liquid. Molar mass of barium = 137 g/mol. 			
26	 A liquid fermentation medium at 30°C is pumped at a rate of 2000 kg/h through a heater, where it is heated to 70°C under pressure. The waste heat water used to heat this medium enters at 95°C and leaves at 85°C. The average heat capacity of the fermentation medium is 4.06 kJ/kg ⋅ K, and that for water is 4.21 kJ/kg ⋅ K. The fermentation stream and the wastewater stream are separated by a metal surface through which heat is transferred and the streams do not physically mix with each other as shown in figure below. 2000 kg/h liquid 2000 kg/h liquid 70°C W kg/h water stream A) What are the relevant assumption and formulae used? B) Calculate the water flow rate required and the amount of heat added to the fermentation medium assuming no heat losses. 	10	CO4	

		T S	ECTION-D (2 Q× 2 (Answer all the					
27	In anaerobic digest	gests glucose from						
	plants to form products ethanol and propionic acid according to							
	Reaction 1: $C_6H_{12}O_6$						CO2	
	Reaction 2: $C_6H_{12}O_6 \rightarrow 2C_2H_3CO_2H + 2H_2O$							
	In a batch process, 4000 Kg of a 12% glucose/water solution is charged, and after							
	fermentation 120 Kg of carbon dioxide is produced leaving 90 kg of glucose unreacted.							
	a) What are the weight percent of ethyl alcohol remaining in the broth							
	b) What are the weight percent of propionic acid remaining in the broth.							
28	Solid municipal gas can be burned into gas with the resulting composition of 9.2% CO ₂ ,							
	1.5% CO, 7.3% O_2 and 82% N_2 . By neglecting the presence of water vapor in the gas,							
	a) What is the average heat capacity of the gas between 200° F and 500° F							
	b) Evaluate the enthalpy difference for lbmol of the gas between 200° F and 500° F							
	The heat capaci	, is in Btu/lbmol ⁰ F						
	and T in 0 F. The value		15	CO4				
	Component	Α	В	С	D			
	CO ₂	6.895	0.7624 × 10 ⁻³	0.7009×10^{-7}				
	СО	7.104	0.7851 × 10 ⁻³	0.5528 × 10 ⁻⁷				
	O ₂	8.448	5.757×10^{-3}	21.59×10^{-7}	3.059×10^{-10}			
	N ₂	6.865	0.8024×10^{-3}	0.7367×10^{-7}				