Na	me:
\perp $ \cdot $	m.

Enrolment No:

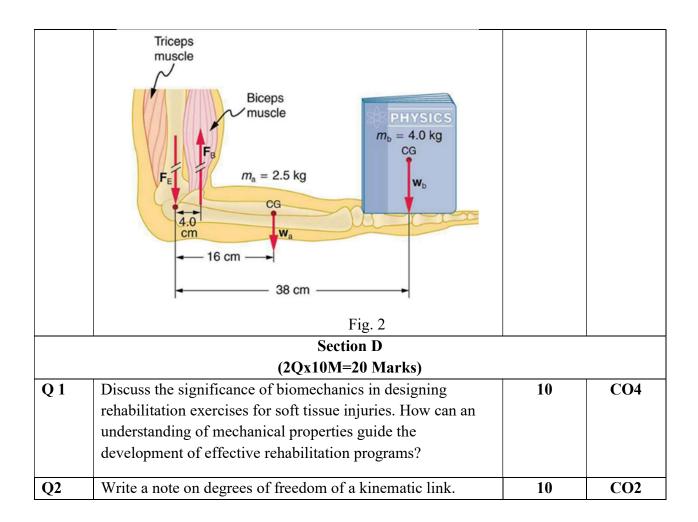
UPES

End Semester Examination, December 2023

Course: Biomechanics Semester : 3rd

Program: B.Tech Biomedical Engineering

Duration: 3 Hours Course Code: HSBE2001


Max. Marks: 100

Instructions: Attempt all the questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M=30 Marks)		
Q 1	Which mechanical property characterizes the ability of a material to return to its original shape after deformation?	1.5	CO4
Q2	In stress-strain analysis, what is the slope of the linear region on the stress-strain curve known as?	1.5	CO4
Q3	What is the primary function of tendons in the human body?	1.5	CO2
Q4	Which biomechanical property is particularly important for materials subjected to repetitive loading over time?	1.5	CO3
Q5	What type of stress is applied uniformly in all directions across a tissue?	1.5	CO3
Q6	Which parameter is used to describe the ability of a material to absorb energy before rupturing?	1.5	CO4
Q7	In the context of biomechanics, what is the primary function of ligaments?	1.5	CO4
Q8	What is the term for the process of bone healing where a callus forms around the fracture site?	1.5	CO3
Q9	When analyzing joint forces, what does the term "torque" refer to?	1.5	CO3

Q10	Why does resistance training contribute to bone health and	1.5	CO3
Q11	density? What do you mean by biomechanics?	1.5	CO1
Q12	Mention the types of muscles in the human body.	1.5	CO2
Q13	Define statics and dynamics.	1.5	CO2
Q14	Inertia depends on which of the following factors?	1.5	CO2
	a. position		
	b. force		
	c. mass		
	d. velocity		
Q15	Draw the free body diagram of a book kept stationary on a	1.5	CO2
	table. Assume the table to be at rest.		
Q16	Why is coefficient of static friction greater than dynamic	1.5	CO2
	friction?		
Q17	What is the degree of freedom of a human arm? Justify your	1.5	CO2
	answer.		
Q18	Differentiate between scalar and vector quantities.	1.5	CO2
Q19	Give an instance where Newton's third law is applicable to	1.5	CO2
	human biomechanics.		
Q20	Who among the following is considered as the father of	1.5	CO1
	modern biomechanics?		
	a. Rene Descartes		
	b. Leonardo DaVinci		
	c. Galileo Galilei		
	d. Giovanni Borelli		
	Section B		
	(4Qx5M=20 Marks)		
Q 1	Describe the viscoelastic behavior of soft tissues. How does	5	CO4
	this property influence the response of tissues to dynamic loads?		
Q2	Elaborate on the mechanical properties of tendons and	5	CO3
	ligaments. How do these properties contribute to their		
	specific functions in the musculoskeletal system?		
Q3	What is the resultant vector of a horizontal displacement of 2.6	5	CO2
	km and a vertical displacement of 6.7 km as shown in Fig. 1?		

	What is the angle made by the resultant with the horizontal displacement? R 6.7 km 75.7° 2.6 km Fig. 1		
Q5	Consider a person standing on the ground, which offers	5	CO2
Q3	friction, being pushed with a constant velocity. Show that the 1 st law of equilibrium is valid in this case.	3	CO2
	Section C		
	(2Qx15M=30 Marks)		
Q 1	Discuss the role of time-dependent behavior in biomechanics. How does the time-dependent response of biological tissues impact their overall mechanical performance?	15	CO3
Q2	Consider the elbow joint mechanism as shown in Fig. 2. Draw the free body diagram of the elbow joint and calculate by how much factor the bicep muscles overpower the combined weight of forearm and the book in order to be able to hold the book.	15	CO2

