7						
	N	n	n	1	Λ	•
		4	•		┖-	_

Enrolment No:

UPES

End Semester Examination, December 2023

Course: Biomedical transport Semester : 3rd

Program: B. Tech Biomedical Engineering

Duration : 3 Hours

Course Code: HSBE2002 Max. Marks: 100

Instructions: Attempt all the questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	What does the Michaelis-Menten equation describe?	1.5	CO2
Q 2	What is the significance of Vmax in enzyme kinetics?	1.5	CO3
Q 3	How does enzyme concentration affect the initial reaction rate?	1.5	CO3
Q 4	What is the role of reaction transport in biological systems?	1.5	CO3
Q 5	How can concentration gradients impact reaction transport?	1.5	CO2
Q 6	How do enzymes contribute to drug metabolism?	1.5	CO2
Q 7	What is the significance of understanding enzyme kinetics in drug administration?	1.5	CO3
Q 8	Define bioconversion in the context of biomedical engineering.	1.5	CO3
Q 9	Provide an example of a bioconversion process.	1.5	CO3
Q 10	How are immobilized enzymes utilized in industrial processes?	1.5	CO2
Q 11	The path traversed by a fluid molecule is known as:	1.5	CO2
	a. Streakline		

	b. Streamtube		
	c. Mean free path		
	d. Pathline		
Q 12	How fluid mechanics is relevant in the area of biomechanics?	1.5	CO 1
Q 13	Define fluid statics and fluid dynamics.	1.5	CO 1
Q 14	The first sound during a heartbeat appears due to:	1.5	CO 1
	a. Closure of A-V valves		
	b. Closure of S-L valves		
	c. Opening of A-V valves		
	d. Opening of S-L valves		
Q 15	The liquid flow through a microfluidic channel is governed	1.5	CO 4
	by:		
	a. Pascal's law		
	b. Bernoulli's theorem		
	c. Navier-Stoke's equation		
0.16	d. None of the above	1.5	00.4
Q 16	What do you understand by MEMS?	1.5	CO 4
Q 17	How is specific volume of a liquid related to its density?	1.5	CO 1
Q 18	Give an example of steady non-uniform flow.	1.5	CO 1
Q 19	Provide an estimate of the Reynold's number of blood when	1.5	CO 4
0.20	it flows through the micro-capillaries.	1.5	CO 1
Q 20	What is the interpretation of the continuity equation?	1.5	CO 1
	Section B		
	(4Qx5M=20 Marks)		
0.1	In a bioconversion process using enzyme X, researchers	5	CO2
Q 1	observed an unexpected decrease in the reaction rate after a	5	CO3
	certain period of time, despite maintaining constant substrate		
	concentrations. Propose a logical explanation for this		
	phenomenon and suggest a strategy to overcome it.		
	phenomenon and suggest a strategy to overcome it.		
	A drug, designed to target a specific enzyme in the liver for	5	CO2
			1
Q 2	metabolism, is administered to a patient. However, the		
Q 2	metabolism, is administered to a patient. However, the therapeutic effects of the drug are not as expected. Provide a		
Q 2	•		
Q 2	therapeutic effects of the drug are not as expected. Provide a		

Q 3	An open tank contains 5 m water ($\gamma = 10 \text{ kN/m}^2$) covered with 2 m oil ($\gamma = 8 \text{ kN/m}^2$). Estimate the hydrostatic pressure at the interface of the liquids as shown in Fig. 1.	5	CO1
	Surface		
	$\gamma=8 \text{ kN/m}^3$ Pi 2m		
	interface 5m		
	γ=10 kN/m ³ Pb		
	Fig. 1		
Q 4	How far can a liquid droplet travel through a microfluidic channel of diameter 50 µm if the surface tension is 72 mN/m and contact angle is 5°? Calculate the distance the droplet can travel if the contact angle rises to 50°.	5	CO4
	Section C (2Qx15M=30 Marks)		
Q1	A new drug candidate exhibits excellent solubility but struggles with permeability across biological membranes. Discuss the implications of this challenge on the drug's pharmacokinetics and propose a strategy to address this issue.	15	CO2
Q 2	Justify the potential of MEMS-based devices in replacing the conventional biomedical technologies.	15	CO4
	Section D		
0.1	(2Qx10M=20 Marks)	10	CO2
Q1	(I) A drug designed to target intracellular enzymes faces challenges in cellular uptake. Discuss the importance of understanding intracellular transport in drug development and propose a logical approach to enhance the drug's cellular penetration.	10	CO3
	(II) A drug with a short half-life is administered, but its concentration in the target tissue is insufficient for therapeutic effects. Explain the role of drug distribution in this scenario and propose a strategic approach to enhance tissue targeting.		

Q 2	Differentiate between gauge pressure and absolute pressure.	10	2
	Consider a droplet of blood at rest, having radius of 1.4 mm,		
	and is under a pressure of 60 mPa due to vasco-constriction in		
	the z-x plane of the droplet. What will be the pressure on a unit		
	cross section area of the blood droplet facing the x-y plane?		