Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2023

Course: Biochemistry Semester : I

Program: MSc Microbiology Duration : 3 Hours
Course Code: HSMB7008 Max. Marks: 100

Instructions:

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	Define chiral carbon.	1.5	CO1
Q 2	Identify the position of psi and phi bond in the given structure	1.5	CO1
Q 3	Define anomeric carbon.	1.5	CO1
Q 4	Define energy rich compound with an example.	1.5	CO1
Q 5	Draw the structure of any acidic amino acid.	1.5	CO1
Q 6	State the name of amino acids having guanidinium group.	1.5	CO1
Q 7	If a cofactor binds covalently, called it as	1.5	CO1
Q 8	For a spontaneous reaction to occur, $\Delta G > 0$ (True/False) Explain.	1.5	CO1
Q 9	Define zwitter ions.	1.5	CO1
Q 10	Recall net ATP produced per glucose molecule in TCA cycle.	1.5	CO1
Q 11	Draw the structure of maltose.	1.5	CO2
Q 12	Discuss iodine number.	1.5	CO2
Q 13	Live cells resemble a closed system. True/False	1.5	CO2
Q 14	Recall the structure of lauric acid (12:0).	1.5	CO2
Q 15	Describe why aquatic animals have more unsaturated fatty acid?	1.5	CO2
Q 16	Ramachandran plot is used to describe tertiary structure of proteins. True/False	1.5	CO2
Q 17	Explain why unsaturated fatty acids liquid and saturated fatty acids are waxy in nature at room temperature	1.5	CO2
Q 18	Describe Michaelis-Menten constant.	1.5	CO2
Q 19	Identify the order of reaction and label A, B and C	1.5	CO2

Q 20	Rate Concentration Concentration Concentration Concentration Concentration Concentration Concentration Concentration	1.5	CO2
	melting point.		
	Section B (4Qx5M=20 Marks)		
Q 1	Recall α- helix structure of proteins.	5	CO1
Q 2	Describe the steps of alcoholic fermentation of pyruvate.	5	CO2
Q 3	Explain the different kind of weak and strong interactions involve in stabilizing tertiary structures of proteins.	5	CO3
Q 4	Derive the Lineweaver-Burk plot equation and explain the significance of Km and Vmax.	5	CO5
	Section C		
Q 1	(2Qx15M=30 Marks) Discuss what enzyme does in a reaction and how enzymes	4+3+8	CO3
	operate. The below given diagram represents comparison of uncatalyzed with enzyme catalyzed reaction. Label A, B, C, D, E, F, G and H. A A B C H		
Q 2	Defend the given below statement: One Glucose molecule converted in two molecules of pyruvate through multistep process and net yield is two ATP per glucose.	15	CO5
	Section D (2Qx10M=20 Marks)		

Q 1	Schematically demonstrate how TCA cycle is linked with	10	CO4
	Electron Transport Chain (ETC).		
Q 2	Compare and contrast different kinds of enzyme inhibitions	10	CO4
	with suitable examples.		