

Q 8	Solve the boundary value problem $x y^{\prime \prime}+y=0, y(1)=1, y(2)=2$ by second order finite difference method with $h=0.25$.	10	CO4
Q 9	The velocity of a rocket is given by $v(t)=2000 \ln \left[\frac{14 \times 10^{4}}{14 \times 10^{4}-2100 t}\right]-9.8 t, \quad 0 \leq t \leq 30$ Calculate the acceleration at $t=16 \mathrm{~s}$ using forward and central difference approximations for the first derivative of $v(t)$. In your opinion, which approximation do you believe would offer a more accurate estimate, and what is the reasoning behind your choice? Please utilize a step size of $h=2 s$. OR Find the missing term in the following table:	10	CO 2
	$\begin{gathered} \text { SECTION C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$		
Q 10	Present an algorithm for executing the Bisection method. Using the bisection method with an initial bracket of $[1,5]$, and after four iterations, determine the iterative approximation of the root for the equation $t e^{-t}-0.3=0$. OR Provide an algorithm for the implementation of the Newton-Raphson method for finding the root of an algebraic equation. You are working for "DOWN THE TOILET COMPANY" that makes floats for ABC commodes. The floating ball has a specific gravity of 0.6 and has a radius of 5.5 cm . You are asked to find the depth to which the ball is submerged when floating in the water. The equation that gives the depth x in meters to which the ball is submerged underwater is given by $x^{3}-0.16 x^{2}+3.993 \times 10^{-4}=0$ Perform two iteration of the Newton Raphson method to determine the root of the equations that represent the depth x to which the ball is submerged underwater. Start with an initial guess of $x_{0}=0.05 \mathrm{~m}$.	20	CO1

Q 11	Solve the following heat conduction equation $u_{x x}=32 u_{t}, 0 \leq x \leq 1$ taking $h=0.5$ and $u(x, 0)=0,0 \leq x \leq 1, u(0, t)=0, u(1, t)=t, t>0$. Use an explicit method with $\lambda=1 / 2$. Compute for four time steps.	20	CO4

