Name:

Enrolment No:

UPES

Supplementary Examination, December 2023

Course: Mathematics III (Numerical methods) Program: B.Tech AE

Course Code: MATH2044

Semester: III Time: 03 hrs Max. Marks : 100

Instruct	ions: You must answer all of the questions. You are permitted to utilize a scientific calcu	lator as n	ecessary.	
	SECTION A (5Qx4M=20 Marks)			
S. No.		Marks	СО	
Q 1	Define the order of a numerical method for the solution of the initial value problem $y' = f(x, y), y(x_0) = y_0$. What orders characterize Modified Euler's method and Heun's method?	4 CO3		
Q 2	Write the second order difference approximations for (i) $y'(x_i)$ and (ii) $y''(x_i)$ based on central differences.	4	CO4	
Q 3	Write out the standard five-point formula for solving (i) Laplace's equation $u_{xx} + u_{yy} = 0$ and (ii) Poisson equation $u_{xx} + u_{yy} = G(x, y)$ with uniform mesh spacing h .	4	CO4	
Q 4	What are the drawbacks of numerical differentiation.	4	CO2	
Q 5	Define an iterative procedure for solving a system of algebraic equations $Ax = b$. What do we mean by convergence of an iterative procedure?	4	CO3	
	SECTION B (4Qx10M=40 Marks)			
Q 6	Solve the following system of equations $26c_1 + 2c_2 + 2c_3 = 12.6$ $3c_1 + 27c_2 + c_3 = -14.3$ $2c_1 + 3c_2 + 17c_3 = 6.0$ using Jacobi iteration method. Obtain the results correct to three decimal places.	10	CO3	
Q 7	Consider the initial value problem $y' = x(y + 1), y(0) = 1$. Compute $y(0.2)$ with $h = 0.1$ using Euler's method.	10	CO3	

Q 8	Solve the boundary value problem $xy'' + y = 0$, $y(1) = 1$, $y(2) = 2$ by second order finite difference method with $h = 0.25$.					10	CO4		
Q 9	The velocity of a rocket is given by $v(t) = 2000 ln \left[\frac{14 \times 10^4}{14 \times 10^4 - 2100t} \right] - 9.8t, 0 \le t \le 30$ Calculate the acceleration at $t = 16 s$ using forward and central difference approximations for the first derivative of $v(t)$. In your opinion, which approximation do you believe would offer a more accurate estimate, and what is the reasoning behind your choice? Please utilize a step size of $h = 2 s$.ORFind the missing term in the following table: χ 01234						10	CO2	
	<i>f(x)</i>	1	3		? TION C =40 Marks	81			
Q 10	with an initial approximation Provide an all finding the ro COMPANY''' gravity of 0.4 the ball is sub in meters to very Perform two	al bracket on of the ro algorithm oot of an al ' that mak 6 and has bmerged v which the iteration	t of [1,5], bot for the im- lgebraic eques floats for a radius of when floati ball is subi- $x^3 - 0.1$ of the New it the depth	and after equation to OR uplementation. Yo or ABC co of 5.5 cm. Yo ng in the winerged und $6 x^2 + 3.9$ wton Raph	four iterative four iterative four iterative four iterative for a second strain for the four of the f	tions, detern = 0. Newton-Rap ing for "DOV The floating I ked to find the equation that given by $f^{4} = 0.$ d to determine	bisection method nine the iterative obson method for VN THE TOILET ball has a specific he depth to which gives the depth x ne the root of the underwater. Start	20	CO1

Q 11	Solve the following heat conduction equation	20	
	$u_{xx} = 32 \; u_t, 0 \le x \le 1,$		CO4
1	taking $h = 0.5$ and $u(x, 0) = 0, 0 \le x \le 1, u(0, t) = 0, u(1, t) = t, t > 0$. Use an explicit method with $\lambda = 1/2$. Compute for four time steps.		