Name: Enrolment No:				
	UPES			
Supplementary Examination, Dec 2023 Course: Introduction to CFD Program: M.Tech CFD Course Code: ASEG 7001 Semester: I Time 03 hrs. Max. Marks: 100		03 hrs.		
	SECTION A			
S. No.		M	Iarks	CO
Q 1	List various steps involved in CFD analysis.		4	CO1
Q 2	Derive the discretized term for $\frac{\partial}{\partial x}$ second order upwind scheme.		4	CO2
Q 3	Discuss the importance of discretization in CFD.		4	CO2
Q 4	Discuss on various error sources in CFD.		4	CO3
Q 5	Compare finite volume approach with finite element approach for fluid	simulations	4	CO4
	SECTION B	1		
Q 6	Apply first law of thermodynamic to a control volume and hence derive the energy equation in integral form. Use mathematical theorems to convert it in to differential equation form.		10	CO1
Q 7	Explain the mathematical behavior of governing equation for unsteady	inviscid flow.	10	CO1
Q 8	Transform the following terms form physical plane (x,y) to computation i. $\frac{\partial}{\partial x}$	al plane (ε, η) :		

Q 9	Formulate the set of mathematical equations using explicit approach for one- dimensional heat conduction equation and hence explain the concept of time marching.	10	CO3			
	SECTION-C					
Q 10 Interpret the application of relaxation technique during a simulation with an example. Illustrate its mathematical behaviour and hence discuss the concept of over-relaxation and under-relaxation.		20	CO3			

OR

Transform the following terms form physical plane (x,y) to computational plane (ε,η) :
iii. $\frac{\partial}{\partial y}$ iv. $\frac{\partial^2}{\partial x \partial y}$

OR

10

CO₂

	Formulate the mathematical equations of Alternating-Direction-Implicit (ADI) technique for solving fluid flow problems		
Q 11	i. Emphasis on the formulation of cell-vertex approach for solving fluid flow problems.ii. Explain upwind type discretization of governing equation in finite volume method.	20 (15+5)	CO4