3 1		
	am	Δ.
Τ.4	аш	•

Enrolment No:

UPES

Supplementary Examination, December 2023

Course: Mathematics III

Program: B.Tech Civil

Semester: III

Time: 03 hrs

Max. Marks : 100

Course Code: MATH2045

Instructions: You must answer all of the questions. For Question 10, please answer both parts (a) and (b), or alternatively, you may choose to attempt both parts (c) and (d).

SECTION A (5Qx4M=20 Marks)

S. No.		Marks	CO
Q 1	Find the Laplace transform of $f(t)$ defined as		
	$f(t) = \begin{cases} 1, 0 < t \le 1 \\ t, 1 < t \le 2 \\ 0, & t > 2 \end{cases}$	4	CO1
Q 2	Find the inverse transform of $\frac{s^2-3s+4}{s^3}$.	4	CO1
Q 3	Find the truth table of $\neg p \land q$.	4	CO2
Q 4	Consider the set Q of rational numbers with the usual order \leq . Consider the subset D of Q defined by $D = \{x x \in Q \text{ and } 8 < x^3 < 15\}$. (a) Is D bounded above or below? (b) Does $Sup(D)$ or $Inf(D)$ exist?	4	CO3
Q 5	Consider the second order homogeneous recurrence relation $a_n = a_{n-1} + 2 a_{n-2}$ with initial conditions $a_0 = 2$, $a_1 = 7$. Find the next three terms of the sequence.	4	CO4
	SECTION B (4Qx10M=40 Marks)		
Q 6	A ball is dropped on a floor from a height of 40 m . It is assumed that the ball always rebounds and reaches half of the height from which it falls. If a_n denotes the height it reaches in the n^{th} rebound, then build the numeric function and find a_n . If b_n is the loss in height during the n^{th} rebound, then find b_n and write it in terms of a_n .	10	CO4
Q 7	Solve the following recurrence relation $a_n - 7a_{n-1} + 10$ $a_{n-2} = 0$; $n \ge 2$, given that $a_0 = 0$, $a_1 = 41$.	10	CO4
Q 8	Show that the following argument is a fallacy: $p \rightarrow q$, $\neg p \vdash \neg q$.	10	CO2

Q 9	Suppose $X = \{1,2,6,8,12\}$ is ordered by divisibility and suppose $Y = \{a,b,c,d,e\}$ is isomorphic to X ; say, the following function f is a similarity mapping from X onto Y :		
	$f = \{(1,e), (2,d), (6,b), (8,c), (12,a)\}$		
	Draw the Hasse diagram of Y.	10	CO3
	OR		
	Let L be a bounded distributive Lattice. Prove that complements are unique, if they exist.		
	SECTION C		
	(2Qx20M=40 Marks)		
Q 10	(A) Apply convolution theorem to evaluate the following inverse Laplace transform.		
	$L^{-1} \frac{s^2}{(s^2 + a^2)(s^2 + b^2)}$		
	(B) Apply convolution theorem to evaluate the following		
	$Z^{-1}\frac{z^2}{(z-a)(z-b)}$	20	CO1
	OR	20	
	(C) Solve by the method of Laplace transforms, the equation		
	y''' + 2y'' - y' - 2y = 0		
	given $y(0) = y'(0) = 0$ and $y''(0) = 6$.		
	(D) Find the Z-trnasforms of $\cosh(\frac{n\pi}{2} + \frac{\pi}{4})$.		
Q 11	Consider the third-order homogeneous recurrence relation $a_n = 6 a_{n-1} - 12 a_{n-2} +$		
	$8a_{n-3}$.		
	(A) Find the general solution.	20	GO 4
	(B) Find the solution with initial conditions $a_0 = 3$, $a_1 = 4$, $a_2 = 12$.	20	CO4