

Q 9	Suppose $X=\{1,2,6,8,12\}$ is ordered by divisibility and suppose $Y=\{a, b, c, d, e\}$ is isomorphic to X; say, the following function f is a similarity mapping from X onto Y : $f=\{(1, e),(2, d),(6, b),(8, c),(12, a)\}$ Draw the Hasse diagram of Y. OR Let L be a bounded distributive Lattice. Prove that complements are unique, if they exist.	10	CO 3
	$\begin{gathered} \text { SECTION C } \\ (2 \mathrm{Qx20M}=40 \text { Marks }) \end{gathered}$		
Q 10	(A) Apply convolution theorem to evaluate the following inverse Laplace transform. $L^{-1} \frac{s^{2}}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}$ (B) Apply convolution theorem to evaluate the following $Z^{-1} \frac{z^{2}}{(z-a)(z-b)}$ OR (C) Solve by the method of Laplace transforms, the equation $y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=0$ given $y(0)=y^{\prime}(0)=0$ and $y^{\prime \prime}(0)=6$. (D) Find the Z-trnasforms of $\cosh \left(\frac{n \pi}{2}+\frac{\pi}{4}\right)$.	20	CO1
Q 11	Consider the third-order homogeneous recurrence relation $a_{n}=6 a_{n-1}-12 a_{n-2}+$ $8 a_{n-3}$. (A) Find the general solution. (B) Find the solution with initial conditions $a_{0}=3, a_{1}=4, a_{2}=12$.	20	CO4

