Name: Enrolment No:			
Course: Mathematics I Program: B. Tech APE UP/APE Gas/CE-RP/Civil/ADE Course Code: MATH 1026	UPES Supplementary Examination, December 2023 Mathematics I Code: MATH 1026	Semester: I Time: 03 hrs. Max. Marks: 100	
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	COs
Q 1	Find the rank of the following matrix. $\left[\begin{array}{lll} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{array}\right]$	4	CO1
Q 2	Find the value of $\frac{\Gamma\left(\frac{9}{2}\right)}{\Gamma\left(\frac{5}{2}\right)}$.	4	CO2
Q 3	If $z=f(x, y)$ where $x=e^{u} \cos v$ and $y=e^{u} \sin v$, show that $y \frac{\partial z}{\partial u}+x \frac{\partial z}{\partial v}=e^{2 u} \frac{\partial z}{\partial y}$.	4	CO 2
Q 4	Evaluate $\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{\sqrt{\left(1-x^{2}\right)\left(1-y^{2}\right)}}$	4	CO 3
Q 5	If $\phi=3 x^{2} y-y^{3} z^{2}$; find grad ϕ at the point (1,-2,-1).	4	CO3
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	Verify Cayley Hamilton Theorem of the matrix $A=\left[\begin{array}{ccc}4 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 1\end{array}\right]$ and hence find A^{-1}.	10	CO1

Q 7	Investigate for what values of λ and μ the simultaneous equations $\begin{aligned} & 2 x+3 y+5 z=9 \\ & 7 x+3 y-2 z=8 \\ & 2 x+3 y+\lambda z=\mu \end{aligned}$ have (i) no solution (ii) unique solution (iii) infinitely many solutions.	10	CO1
Q 8	Obtain the half range sine series for the function $\pi x-x^{2}$ in the interval $(0, \pi)$ up to the first three terms.	10	CO4
Q 9	Find the Fourier series for the function $f(x)= \begin{cases}\pi x, & 0 \leq x \leq 1 \\ \pi(2-x), & 1 \leq x \leq 2\end{cases}$ OR If $f(x)$ is a function defined by $f(x)=\left\{\begin{array}{l}x: 0 \leq x \leq \frac{\pi}{2} \\ \pi-x ; \frac{\pi}{2} \leq x \leq \pi\end{array}\right.$, Express $f(x)$ by cosine series.	10	CO4
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10A	If $u=\sin ^{-1}\left(\frac{x^{3}+y^{3}+z^{3}}{a x+b y+c z}\right)$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=2 \tan u$	10	CO2
Q 10B	If $x+y+z=u, y+z=u v, z=u v w$, show that $\frac{\partial(x, y, z)}{\partial(u, v, w)}=u^{2} v$.	10	$\mathrm{CO2}$
Q11	Prove that $\left(y^{2}-z^{2}+3 y z-2 x\right) \hat{\imath}+(3 x z+2 x y) \hat{\jmath}+(3 x y-2 x z+$ $2 z) \hat{k}$ is both solenoidal and irrotational. OR A vector field is given by $\vec{F}=(\sin y) \hat{\imath}+x(1+\cos y) \hat{\jmath}$. Evaluate the line integral over a circular path $x^{2}+y^{2}=a^{2}, z=0$.	20	$\mathrm{CO3}$

