| Name: |
| :--- | :--- |
| Enrolment No: |

Progr Cour Cours Nos. Instruc		$\begin{aligned} : & \text { III } \\ : & 3 \mathrm{hr} \\ \mathrm{~s} & : 100 \end{aligned}$	
$\begin{gathered} \text { SECTION A } \\ (\mathbf{5 X 4}=\mathbf{2 0} \text { marks) } \end{gathered}$			
S. No.		Marks	CO
1	A mixture of gases has the following composition by weight $\mathrm{N}_{2}=34 \mathrm{Cl}_{2}=22 \% \mathrm{Br}_{2}=$ 25% and $\mathrm{O}_{2}=19 \%$. Find (i) Composition of the gas mixture by volume \% (ii) Density of the gas mixture in $\mathrm{kg} / \mathrm{m} 3$ at $25^{\circ} \mathrm{C}$ \& 740 mm Hg .	4	CO1
2	A mixture of acetone vapor and nitrogen gas at atmospheric pressure and 295 K contains acetone vapor to the extent that it exerts a partial pressure of 15 kPa . The vapor pressure of acetone at 295 K is 26.36 kPa . Solve for 1) Molal saturation 2) Absolute saturation 3) Relative saturation \% relative saturation	4	CO 2
3	10 kg of CH_{4} is burnt with 10% excess air. What will be the volume of the air used for combustion if air is at $30^{\circ} \mathrm{C}$ and 1.3 atm pressure?	4	$\mathrm{CO3}$
4	Aluminum reacts with chlorine gas to form aluminum chloride via the following reaction: $2 \mathrm{Al}+3 \mathrm{Cl}_{2}--->2 \mathrm{AlCl}_{3}$. If 34 g of aluminum and 39 g of chlorine gas are used. Find limiting reactant and calculate \%excess reactant.	4	CO4
5	The heat capacity of silicon carbide is given by $C_{P}=37.221+1.22 \times 10^{-3} T-1.189 \times 10^{5} T^{-2}$ where Cp is in $\mathrm{KJ} / \mathrm{Kmol} \mathrm{K}$ and T is in K. Estimate the enthalpy change in silicon carbide in the range 0 to 1000 K .	4	CO5

SECTION B

($4 \times 10=40 \mathrm{marks}$)

$\mathbf{6}$	A gas containing only CH_{4} and N_{2} is burned with air yielding a flue gas that has an Orsat analysis of $\mathrm{CO}_{2}: 8.7 \%, \mathrm{CO}: 1.0 \%, \mathrm{O}_{2}: 3.8 \%$, and $\mathrm{N}_{2}: 86.5 \%$. Infer the percent excess air used in combustion and the composition of the CH_{4} and N_{2} mixture.	$\mathbf{1 0}$	$\mathbf{C O 3}$
$\mathbf{7}$	A 10.20 g sample of a gas has a volume of 5.25 L at $23^{\circ} \mathrm{C}$ and 751 mmHg . If 2.30 g of the same gas is added to this constant 5.25 L volume and the temperature raised to $67{ }^{\circ} \mathrm{C}$, what is the new gas pressure?	$\mathbf{1 0}$	$\mathbf{C O 4}$
$\mathbf{8}$	A solution of sodium chloride is available at 343 K which is saturated. This solution when cooled to 298 K, releases 100 g of crystals of NaCl . Estimate the weight of the initial solution at $343 \mathrm{~K} . T h e ~ s o l u b i l i t y ~ o f ~$ NaCl in water at 343 and 298 K are 6.39 and $6.14 \mathrm{kmol} / 1000 \mathrm{~kg}$ water respectively.	$\mathbf{1 0}$	$\mathbf{C O 5}$
$\mathbf{9}$	A liquid fermentation medium at $30^{\circ} \mathrm{C}$ is pumped at a rate of $2000 \mathrm{~kg} / \mathrm{h}$ through a heater, where it is heated to $70^{\circ} \mathrm{C}$ under pressure. The waste heat water used to heat this medium enters at $95^{\circ} \mathrm{C}$ and leaves at $85^{\circ} \mathrm{C}$. The average heat capacity of the fermentation medium is $4.06 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$, and that for water is $4.21 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$. The	$\mathbf{1 0}$	$\mathbf{C O 6}$

	fermentation stream and the wastewater stream are separated by a metal surface through which heat is transferred and the streams do not physically mix with each other as shown in figure below. Calculate the water flow rate required and the amount of heat added to the fermentation medium assuming no heat losses.		
	SECTION C (2 $\mathbf{X} 20=40$ marks)		
10	A simplified process for SO_{2} to SO_{3} is as shown in the figure below. Sulfur is burned with 100% excess air in the burner though the conversion of SO_{2} is only 90%. In the converter, the conversion from SO_{2} to SO_{3} is only 95%. Calculate the lbs of air needed to burn 100 lbs of Sulfur and the composition of exiting stream from the converter.	20	CO4
11	A natural gas stream has the following composition on mole basis: $\mathrm{CH}_{4}-84 \%, \mathrm{C}_{2} \mathrm{H}_{6}-13 \%$ and $\mathrm{N}_{2}-3 \%$. Analyze the heat to be added to heat 10 kmol of natural gas from 298 K to 523 K using the heat capacity data given below.$C_{P}=a+b T+c T^{2}+d T^{-2}, \mathrm{~kJ} /(\mathrm{kmol}-\mathrm{K})$Gas a $\mathrm{b} \times 10^{3}$ $\mathrm{c} \times 10^{6}$ $\mathrm{~d} \times 10^{9}$ CH_{4} 19.2494 52.1135 11.973 -11.3173 $\mathrm{C}_{2} \mathrm{H}_{6}$ 5.4129 178.0872 -67.3749 8.7147 $\mathrm{~N}_{2}$ 29.5909 -5.141 13.1829 -4.968 OR One kg of water is heated from 250 K to 400 K at one standard atmospheric pressure. Estimate, how much heat is required for this? Data: The mean heat capacity of ice $\mathrm{Cp}=2.03 \mathrm{KJ} / \mathrm{kmol} \mathrm{K}$ (between 250 and 273 K) The heat capacity of water between 273 K and 373 K is $1 \mathrm{btu} / \mathrm{lb}{ }^{\circ} \mathrm{F}$. The heat capacity of water vapor from 373 to 400 K is $\mathrm{Cp}=30.475+9.652 \times 10^{-3} \mathrm{~T}+1.189 \times 10^{-6} \mathrm{~T}^{2}$. The latent heat of fusion of water is $144 \mathrm{btu} / \mathrm{lb}$ and that of vaporization is 40608 $\mathrm{KJ} / \mathrm{Kmol}$.	20	CO6

