Name:	Name:				
Enrolment No:					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES					
Supplementary Examination, December 2023					
Programme Name:B. Tech. (CERP)Semester			: III		
Course Name: Material and Energy Balance ComputationsTime		: 3 hrs			
Course Code : CHCE 2013 Max. Mark			s :100		
Nos. of page(s) : 02					
Instructions : Assume any missing data. Draw the diagrams, wherever necessary.					
SECTION A (5X4=20 marks)					
S. No.			Marks	CO	
1	A mixture of gases has the following composition by weight $N_2=34$ $Cl_2=22$ % $Br_2=25\%$ and $O_2=19\%$. Find (i) Composition of the gas mixture by volume % (ii) Density of the gas mixture in kg/m3 at 25°C & 740 mm Hg.			CO1	
			4		
2	A mixture of acetone vapor and nitrogen gas at atmospheric pressure and 295K		4	CO2	
	contains acetone vapor to the extent that it exerts a partial pressure of 15 kPa. The				
	vapor pressure of acetone at 295K is 26.36 kPa.				
	Solve for				
	1) Molal saturation				
	2) Absolute saturation				
	3) Relative saturation				
	% relative saturation				
3	10 kg of CH ₄ is burnt with 10% excess air. What will be the volume of the air used		4	CO3	
4	for combustion if air is at 30°C and 1.3 atm pressure?		4	CO4	
4	Aluminum reacts with chlorine gas to form aluminum chloride via the following reaction: $2Al + 3Cl_2> 2AlCl_3$. If 34 g of aluminum and 39 g of chlorine gas are		4	C04	
	used. Find limiting reactant and calculate %excess reactant.				
5	The heat capacity of silicon carbide is given by		4	CO5	
	$C_P = 37.221 + 1.22X10^{-3}T - 1.189X10^5T^{-2}$ where Cp is in KJ/Kmol K and T is				
	in K. Estimate the enthalpy change in silicon carbide in the range 0 to 1000 K.				
SECTION B					
(4 X 10=40 marks)					
	gas containing only CH_4 and N_2 is burned with air yielding a flue gas that has an		10		
6	Orsat analysis of CO ₂ : 8.7%, CO: 1.0%, O ₂ : 3.8%, and N ₂ : 86.	5%. Infer the percent	10 CO3		
	excess air used in combustion and the composition of the CH ₄ as	cess air used in combustion and the composition of the CH ₄ and N ₂ mixture.			
	A 10.20 g sample of a gas has a volume of 5.25 L at 23 °C and 751 mmHg. If 2.30 g				
7	of the same gas is added to this constant 5.25 L volume and the	temperature raised to	to 10 CO4		
	67 °C, what is the new gas pressure?				
	A solution of sodium chloride is available at 343 K which is saturated. This solution				
8		cooled to 298 K, releases 100 g of crystals of NaCl. Estimate the weight of the			
	initial solution at 343K. The solubility of NaCl in water at 343 and	-			
	6.14 kmol /1000 kg water respectively.				
	A liquid fermentation medium at 30° C is pumped at a rate of 2000 kg/h through a				
	eater, where it is heated to 70°C under pressure. The waste heat water used to heat				
9	this medium enters at 95°C and leaves at 85°C. The average heat capacity of the		10	CO6	
	ermentation medium is 4.06 kJ/kg \cdot K, and that for water is 4.21 kJ/kg \cdot K. The				
	rementation meanum is 4.00 kJ/kg \cdot K, and that for water is 4.21 kJ/kg \cdot K. The				

