Name: Enrolment No:			
UPES Supplementary Examination, December 2023 Course: Engineering Mathematics I Semester: I Program: B. Tech. [APE(UP)+ADE+ Mechatronics+ Mechanical+ Aerospace] Time $: 03$ hrs. Course Code: MATH 1049 Max. Marks: 100 Instructions: All questions are compulsory.			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q 1	Calculate the rank of the matrix $A=\left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \end{array}\right]$	4	CO1
Q 2	Evaluate $\int_{0}^{3} \int_{0}^{1}\left(x^{2}+3 y^{2}\right) d x d y$	4	CO2
Q 3	Find a unit vector normal to the surface $x^{3}+y^{3}+3 x y z=3$ at the point $(1,2,-1)$.	4	$\mathrm{CO2}$
Q 4	Find the divergence and curl of the vector $\vec{V}=x y z \hat{\imath}+3 x^{2} y \hat{\jmath}+\left(x z^{2}-y^{2} z\right) \hat{k} .$	4	CO 3
Q 5	The Fourier series for $f(x)$ in the interval $c<x<c+2 \pi$ is given by $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x$ Find the coefficient a_{0} for $f(x)=\sin ^{5} x$ from $x=-\pi$ to $x=\pi$.	4	CO4
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M= } 40 \text { Marks) } \end{gathered}$			
Q 6	Using Cayley-Hamilton Theorem find the inverse of $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$.	10	CO1
Q 7	Change the order of the integration in the integral $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$ and hence evaluate the same.	10	$\mathrm{CO2}$
Q 8	Show that $\vec{F}=\left(2 x y+z^{3}\right) \hat{\imath}+x^{2} \hat{\jmath}+3 x z^{2} \hat{k}$ is a conservative force field. Find the scalar potential.	10	CO 3
Q 9	Using Maclaurin's series, expand $\tan x$ up to the term containing x^{3}.	10	CO4

	OR Expand $f(x)=x$ as half range (i) sine series in $0<x<2$, (ii) cosine series in $0<x<2$.		
$\begin{gathered} \text { SECTION-C } \\ (2 \mathrm{Qx} 20 \mathrm{M}=40 \text { Marks }) \\ \hline \end{gathered}$			
Q10 A	Evaluate $\iint_{S} \vec{A} . \hat{n} d S$, where $\vec{A}=z \hat{\imath}+x \hat{\jmath}-3 y^{2} z \hat{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=16$ included in the first octant between $z=0$ and $z=$ 5. OR Find the directional derivative of the function $f=x^{2}-y^{2}+2 z^{2}$ at the point $P(1,2,3)$ in the direction of the line PQ where Q is the point $(5,0,4)$.	10	CO 3
Q10 B	Using Green's theorem, evaluate $\int_{C}\left(x^{2} y d x+x^{2} d y\right)$ where C is the boundary described counter clockwise of the triangle with vertices $(0,0)$, $(1,0),(0,1)$. OR Calculate the constants a and b so that the surface $a x^{2}-b y z=(a+2) x$ is orthogonal to the surface $4 x^{2} y+z^{3}=4$ at the point $(1,-1,2)$.	10	CO 3
Q11 A	Obtain the Fourier series of to represent $f(x)=x^{2},-\pi<x<\pi$. Sketch the graph of $f(x)$.	10	CO4
Q11 B	Find the Fourier series to represent the function $f(x)$ given by $f(x)=\left\{\begin{array}{c} x \text { for } 0 \leq x \leq \pi \\ 2 \pi-x \text { for } \pi \leq x \leq 2 \pi \end{array}\right.$	10	CO4

