Name:

Enrolment No:

	UPES			
Course	Supplementary Examination, December 2023	Semester: 1	-	
0 0			ime : 03 hrs.	
U		Max. Marks		
Instruc	tions: All questions are compulsory.			
	SECTION A			
a N	(5Qx4M=20Marks)			
S. No.		Marks	CO	
	Calculate the rank of the matrix		C01	
Q 1	$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \end{bmatrix}$	4		
	$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10 \end{bmatrix}$			
Q 2	Evaluate $\int_{0}^{3} \int_{0}^{1} (x^{2} + 3y^{2}) dx dy$	4	CO2	
	Find a unit vector normal to the surface $x^3 + y^3 + 3xyz = 3$ at the point	t		
Q 3	(1,2,-1).	4	CO2	
0.4	Find the divergence and curl of the vector	4	CO2	
Q 4	$\vec{V} = xyz\hat{\imath} + 3x^2y\hat{\jmath} + (xz^2 - y^2z)\hat{k}.$	4	CO3	
	The Fourier series for $f(x)$ in the interval $c < x < c + 2\pi$ is given by			
Q 5	$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$	4	CO4	
	Find the coefficient a_0 for $f(x) = sin^5 x$ from $x = -\pi$ to $x = \pi$.			
	SECTION B			
	(4Qx10M= 40 Marks)			
Q 6	Using Cayley-Hamilton Theorem find the inverse of $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$.	10	CO1	
	Change the order of the integration in the integral $\int_0^1 \int_{x^2}^{2-x} xy dy dx$ and	1	CO2	
Q 7	hence evaluate the same. 0.0×10^{-1}	10		
Q 8	Show that $\vec{F} = (2xy + z^3)\hat{\imath} + x^2\hat{\jmath} + 3xz^2\hat{k}$ is a conservative force field.	10	CO3	
	Find the scalar potential.	Ĩ	000	
Q 9	Using Maclaurin's series, expand $\tan x$ up to the term containing x^3 .	10	CO4	

	OR			
	Expand $f(x) = x$ as half range (i) sine series in $0 < x < 2$, (ii) cosine series in $0 < x < 2$.			
SECTION-C (2Qx20M=40 Marks)				
Q10 A	Evaluate $\iint_S \vec{A} \cdot \hat{n} dS$, where $\vec{A} = z \hat{i} + x \hat{j} - 3y^2 z \hat{k}$ and <i>S</i> is the surface of the cylinder $x^2 + y^2 = 16$ included in the first octant between $z = 0$ and $z = 5$. OR Find the directional derivative of the function $f = x^2 - y^2 + 2z^2$ at the point <i>P</i> (1, 2, 3) in the direction of the line PQ where Q is the point (5, 0, 4).	10	CO3	
Q10 B	Using Green's theorem, evaluate $\int_C (x^2ydx + x^2dy)$ where <i>C</i> is the boundary described counter clockwise of the triangle with vertices (0,0), (1,0), (0,1). OR Calculate the constants <i>a</i> and <i>b</i> so that the surface $ax^2 - byz = (a + 2)x$ is orthogonal to the surface $4x^2y + z^3 = 4$ at the point $(1, -1, 2)$.	10	CO3	
Q11 A	Obtain the Fourier series of to represent $f(x) = x^2$, $-\pi < x < \pi$. Sketch the graph of $f(x)$.	10	CO4	
Q11 B	Find the Fourier series to represent the function $f(x)$ given by $f(x) = \begin{cases} x & for 0 \le x \le \pi \\ 2\pi - x & for \pi \le x \le 2\pi \end{cases}$	10	CO4	