Name:

Enrolment No:

UPES, Dehradun Supplementary Examination, December 2023

Course: Algebra Program: B.Sc. Hons. (Mathematics) Course Code: MATH 1040 Semester: I Time: 03 hrs. Max. Marks: 100

Instructions: All questions are compulsory and there are internal choices in Q9 and in Q11.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q1	If $(x + iy)^{1/3} = a + ib$. Prove that $\frac{x}{a} + \frac{y}{b} = 4(a^2 - b^2)$.	4	CO1	
Q2	Let a, b, and c be integers, where $a \neq 0$. Then prove that, i. if $a b$ and $a c$, then $a (b + c)$ ii. if $a b$ and $b c$, then $a c$	4	CO2	
Q3	 The characteristic polynomial of some matrix A is found to be p(λ) = (λ - 1)(λ - 3)²(λ - 4)³ a) What is the size of A? b) Is A invertible? 	4	CO3	
Q4	Comment on the value of k to have a unique solution for the linear system $x - y = 3$, $2x - 2y = k$.	4	CO3	
Q5	Let <i>T</i> be the linear operator on R^2 defined by $T(x, y) = (x + 4y, 2x + 3y)$ and β be the standard ordered basis for R^2 . Then find the matrix of <i>T</i> with respect to β .	4	CO4	
	SECTION B (4Qx10M= 40 Marks)		1	
Q6	If $x = a + b$, $y = a\omega + b\omega^2$, and $z = a\omega^2 + b\omega$, then prove that $x^3 + y^3 + z^3 = 3(a^3 + b^3).$	10	C01	
Q7	Let <i>R</i> be the relation on the set of ordered pairs of positive integers such that $((a, b), (c, d)) \in R$ if and only if $ad = bc$. Show that <i>R</i> is an equivalence relation.	10	CO2	
Q8	Discuss how the rank of A varies with t. $A = \begin{bmatrix} 1 & 1 & t \\ 1 & t & 1 \\ t & 1 & 1 \end{bmatrix}$	10	CO3	

Q9	Let <i>A</i> be a 5 × 7 matrix with rank 4. (a) What is the dimension of the solution space of $AX = 0$? (b) Is $AX = b$ consistent for all vectors <i>b</i> in \mathbb{R}^5 ? Explain. OR Check whether the set of vectors $\{1 - 3x + 2x^2, 1 + x + 4x^2, 1 - 7x\}$ form a basis for P^2 or not.	10	CO4
	SECTION-C (2Qx20M=40 Marks)		
Q10	Find the eigen values and eigen vectors of the matrix, $A = \begin{bmatrix} -2 & 2 & 3 \\ -2 & 3 & 2 \\ -4 & 2 & 5 \end{bmatrix}$, and then find the eigenvalues of A^{-1} .	20	CO3
Q11	Find a basis for the given subspace of \mathbb{R}^3 and state its dimension, in each of the following. (a) The plane $3x - 2y + 5z = 0$. (b) The plane $x - y = 0$. (c) The line $x = 2t, y = -t, z = 4t$. (d) All vectors of the form (a, b, c) , where $b = a + c$. OR Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation defined by the formula $T(x_1, x_2) = (x_1 + 3x_2, x_1 - x_2, x_1)$ a) Find the rank of the standard matrix for <i>T</i> . b) Find the nullity of the standard matrix for T.	20	CO4