Name: Enrolment No:			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q1	If $(x+i y)^{1 / 3}=a+i b$. Prove that $\frac{x}{a}+\frac{y}{b}=4\left(a^{2}-b^{2}\right)$.	4	CO1
Q2	Let a, b, and c be integers, where $a \neq 0$. Then prove that, i. if $a \mid b$ and $a \mid c$, then $a \mid(b+c)$ ii. if $a \mid b$ and $b \mid c$, then $a \mid c$	4	CO2
Q3	The characteristic polynomial of some matrix A is found to be $p(\lambda)=(\lambda-1)(\lambda-3)^{2}(\lambda-4)^{3}$ a) What is the size of A ? b) Is A invertible?	4	$\mathrm{CO3}$
Q4	Comment on the value of k to have a unique solution for the linear system $x-y=3,2 x-2 y=k$.	4	CO3
Q5	Let T be the linear operator on R^{2} defined by $T(x, y)=(x+4 y, 2 x+$ $3 y)$ and β be the standard ordered basis for R^{2}. Then find the matrix of T with respect to β.	4	CO4
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q6	If $x=a+b, y=a \omega+b \omega^{2}$, and $z=a \omega^{2}+b \omega$, then prove that $x^{3}+y^{3}+z^{3}=3\left(a^{3}+b^{3}\right)$.	10	CO1
Q7	Let R be the relation on the set of ordered pairs of positive integers such that $((a, b),(c, d)) \in R$ if and only if $a d=b c$. Show that R is an equivalence relation.	10	CO2
Q8	Discuss how the rank of A varies with t. $A=\left[\begin{array}{lll} 1 & 1 & t \\ 1 & t & 1 \\ t & 1 & 1 \end{array}\right]$	10	CO3

Q9	Let A be a 5×7 matrix with rank 4 . (a) What is the dimension of the solution space of $A X=0$? (b) Is $A X=b$ consistent for all vectors b in $\mathbb{R}^{\mathbf{5}}$? Explain. OR Check whether the set of vectors $\left\{1-3 x+2 x^{2}, 1+x+4 x^{2}, 1-7 x\right\}$ form a basis for P^{2} or not.	10	$\mathrm{CO4}$
$\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 \mathrm{M}=40 \mathrm{Marks}) \end{gathered}$			
Q10	Find the eigen values and eigen vectors of the matrix, $A=\left[\begin{array}{lll}-2 & 2 & 3 \\ -2 & 3 & 2 \\ -4 & 2 & 5\end{array}\right]$, and then find the eigenvalues of A^{-1}.	20	$\mathrm{CO3}$
Q11	Find a basis for the given subspace of $\mathbb{R}^{\mathbf{3}}$ and state its dimension, in each of the following. (a) The plane $3 x-2 y+5 z=0$. (b) The plane $x-y=0$. (c) The line $x=2 t, y=-t, z=4 t$. (d) All vectors of the form (a, b, c), where $b=a+c$. OR Let $T: \mathbb{R}^{\mathbf{2}} \rightarrow \mathbb{R}^{\mathbf{3}}$ be a linear transformation defined by the formula $T\left(x_{1}, x_{2}\right)=\left(x_{1}+3 x_{2}, x_{1}-x_{2}, x_{1}\right)$ a) Find the rank of the standard matrix for T. b) Find the nullity of the standard matrix for T .	20	$\mathrm{CO4}$

