UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Supplementary Examination, December 2023

Programme Name:	B. Tech. APE Gas	Semester	$:$ III	
Course Name	$:$	Material and Energy Balance Computations	Time	$: \mathbf{3 ~ h r s ~}$
Course Code	$:$	CHCE 2025	Max. Marks $: \mathbf{1 0 0}$	
Nos. of page(s)	$:$	02		
Instructions	$:$	Assume any missing data. Draw the diagrams, wherever necessary.		

SECTION A(5X4=20 marks)			
S. No.		Marks	CO
1	A flue gas analyzes $\mathrm{H}_{2}=22 \mathrm{Cl}_{2}=14 \% \mathrm{CO}=51 \%$ and $\mathrm{O}_{2}=13 \%$ by volume. Find (i) Composition of the gas mixture by weight $\%$ (ii) Density of the gas mixture in $\mathrm{lb} / \mathrm{ft}^{3}$ at $180^{\circ} \mathrm{F} \& 760 \mathrm{~mm} \mathrm{Hg}$.	4	CO1
2	Carbon monoxide combines with chlorine in the presence of a suitable catalyst to give phosgene as $\mathrm{CO}+\mathrm{Cl}_{2}-----\mathrm{COCl}_{2}$. After reaction the product contains 12 moles of phosgene, 3 moles of chlorine when 8 moles of carbon monoxide is considered. Identify limiting reactant and calculate \% excess reactant used.	4	CO2
3	The Orsat analysis of the flue gases from a boiler house chimney gives $\mathrm{CO}_{2}: 11.4 \%$, $\mathrm{O}_{2}: 4.2 \%$ and $\mathrm{N}_{2}: 84.4 \%$ (mole\%). If complete combustion has taken place, (a) Calculate the \% excess air, and (b) find the C:H ratio in the fuel.	4	CO2
4	In the process of production of $\mathrm{PCl}_{5}, 4.25 \mathrm{~g}$ of Cl_{2} with 2.20 g of P_{4} produces 4.28 g of PCl_{5}. According to the following reaction. Detail the following. $\mathrm{P}_{4}+10 \mathrm{Cl}_{2}--->4 \mathrm{PCl}_{5}$ (1)Limiting reactant (2) \% excess reactant	4	CO3
5	The heat capacity of silicon carbide is given by $\mathrm{Cp}=37.221+1.22 \times 10^{-2} \mathrm{~T}-1.189 \times 10^{5} \mathrm{~T}^{-2}$ where Cp is in $\mathrm{KJ} / \mathrm{kmol} \mathrm{K}$ and T is in K . Estimate the enthalpy change in silicon carbide in the range 0 to 1000 K .	4	CO4

SECTION B

(4 X 10=40 marks)

6	Power required in an agitator is a function of rotational speed (n), impeller diameter (d), fluid properties like density (ρ), viscosity (μ), and acceleration due to gravity (g). Recognize a relation between the dimensionless groups using dimensional analysis.	10	CO1
7	A producer gas made from coke has the following composition by volume. This gas is burned with 20% excess air. If the combustion is 98% complete, calculate the weight and composition of the stack gases formed per 100 lb of gas burned. Express the composition of stack gases in weight percent and mole percent.	10	CO 2
8	The solubility of barium nitrate $\left[\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}\right]$ in water at 373 and 273 K are 34 g $\left[\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}\right] / 100 \mathrm{~g}$ water and $5 \mathrm{~g}\left[\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}\right] / 100 \mathrm{~g}$ water, respectively. If the saturated solution at 373 K is cooled to 273 K , if 200 g of crystals precipitate out, what is the weight of the initial solution at 373 K . Molar mass of barium $=137 \mathrm{~g} / \mathrm{mol}$.	10	CO 3

9	Enthalpy of steam at 75 kPa and 573 K is $3075 \mathrm{KJ} / \mathrm{kg}$ referred to liquid water at 273 K . If the mean heat capacity of liquid water and water vapor are 4.2 and $1.97 \mathrm{Kj} / \mathrm{kg} \mathrm{K}$ respectively, calculate the heat of vaporization of water at 75 kPa . The saturation temperature of water at 75 kPa is 365 K .	10	CO4
	$\begin{gathered} \text { SECTION C } \\ (2 \times 20=40 \text { marks }) \end{gathered}$		
10	A simplified process for SO_{2} to SO_{3} is as shown in the figure below. Sulfur is burned with 100% excess air in the burner though the conversion of SO_{2} is only 90%. In the converter, the conversion from SO_{2} to SO_{3} is only 95%. Calculate the lbs of air needed to burn 100 lbs of Sulfur and the composition of exiting stream from the converter. OR In anaerobic digestion of grain, the yeast saccharonnyces cerevisiae digests glucose from plants to form products ethanol and propionic acid according to Reaction 1: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}-------\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CO}_{2}$ Reaction 2: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}-------{ }_{2} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{CO}_{2} \mathrm{H}+2 \mathrm{H}_{2} \mathrm{O}$ In a batch process, 4000 Kg of a 12% glucose/water solution is charged, and after fermentation 120 Kg of carbon dioxide is produced leaving 90 kg of glucose unreacted. Compute the weight percent of ethyl alcohol and propionic acid remaining in the broth.	20	CO 3
11	The heat capacity of benzene at two different temperatures is Fit the data into an equation of the form $\mathrm{Cp}=\mathrm{a}+\mathrm{bT}$. Calcualte the heat required to convert 100 kg of liquid benzene from 293.15 K to saturated vapor at the boiling point of 353.25 K . The latent heat of vaporization may be calculated using the Kistyakowsky equation $\frac{\Delta H}{T_{b}}=36.63+8.31 \ln T_{b}$ where Tb is the boiling point of benzene and $\Delta \mathrm{H}$ is the heat of vaporization.	20	CO4

