Name:	₩ UPES
Enrolment No:	SULVESTITE OF TONOGROW
UNIVERSITY	OF PETROLEUM AND ENERGY STUDIES
C1	

	UNIVERSITY OF PETROLEUM AND ENERGY ST Supplementary Examination, December- 2023	UDIES	
Course		emester: III	
	Programme Name: B. Sc, Geology (Hons) Time: 03 hrs		
Course	e Code: PEGS 2024 M	ax. Marks: 100	
	SECTION A		
		(5Qx 4M = 20)	0 Marks)
Q 1	Describe the formation mechanism of reaction structure	04	CO1
Q 2	Describe the various physical properties of magma	04	CO1
Q 3	a. Sills linked by relatively short dike-like segments known as		
	b. Volcanic glass is otherwise known as	04	CO1
	c. Anhedral grains give rise totexture		
0.4	d. Transformation of glass to crystalline matter is known as		
Q 4	Differentiate between vesicular and amygdaloidal texture.	04	CO3
Q 5	a. Mutually touching phenocrysts in interstitial matrix give rise to to	exture	
	b. Sandpaper is an example of abrasive.	04	CO2
	c. In CIPW, the input mineral composition must be in form		
	d. Plutons of area < 100 sq. km is known as		
	SCETION B	(4Qx10M = 4	0 Marks)
Q 6	Differentiate between vesicular and amygdaloidal texture.	10	CO3
Q 7	Can dykes be of sedimentary in origin, support/oppose with suitable justifi	ications 10	CO2
Q 8	Defend the statement "Reaction texture termed as Reaction structure".	10	CO3
Q 9	Examine the theory behind the statement "Subduction zones are suitable lo	cation for	
	magma generation".	10	CO4
	Examine & validate the statement "Uni-component system should have a m		CO4
	degree of freedoms".	aximum of two	
	SECTION C	(20-20M 4)	O Marilya)
0.10	Examine the theory behind the statement "Subduction zones are suitable loc	(2Qx20M = 40)	Wiarks)
Q 10	magma generation".	cation for	
	OR	20	CO4
	Design the classification norm for volcanic igneous rock using CIPW.		

