Name:			11550		
Enrolment No:			UNIVERSITY OF TO	NIVERSITY OF TOMORROW	
		EUM AND ENERGY STUDIES			
	11 V	amination, DEC 2023			
-	mme Name : B. Tech-Mechanical Engine	-	III		
Course	8 8	Time :	03 hrs.		
Course		Max. Marks :	100		
	f page(s) : 2				
	tions: Attempt all questions. One questi- e any missing data if required.	on from section B and C have an a	internal C	hoice.	
	SEC	ΓΙΟΝ Α			
S. No.			Marks	CO	
Q1	(a) Draw neat sketch of S-N curve for mild steel.(b) Define Hardness.		4	C01	
Q2	Sate Hume Rothery, s rules and discuss in detail		4	CO1	
Q3	Draw the scheme of a eutectoid phase diagram of two component system.		4	CO2	
Q4	Differentiate brittle and ductile fracture with appropriate examples.		4	CO3	
Q5	Explain flame hardening process with ne	at sketch.	4	CO4	
	SEC	FION B			
Q6	(a) Define homogeneous and heterogene	ous nucleation.	3		
	(b) Write the coordination number for B		3	CO1	
	(c) Define heat treatment process and me		4		
Q7	(a) Explain resilience, yield strength, and		4	CO2	
09	(b) Explain goodman method for combin		6 6		
Q8	You have a duty to examine a railway wh how you will detect the presence of surf	1 1	0	CO3	
	with a suitable scheme.	ace cracks and describe the process	4		
Q9	A (i) Define fatigue failure. Neatly sketch t (ii) A fatigue test was conducted in which the stress amplitude was 210 MPa. (a) Compute the maximum and minimu (b) Compute the stress ratio.	ch the mean stress was 70 MPa, and	5 5 5		
	 (c) Compute the magnitude of the stres Or B (i) Illustrate the process of measuring end 		5	CO2	

	SECTION-C		
Q10	 (i) Construct a phase diagram for the system A-B for the following data: Melting point of A = 1000 °C Melting point of B = 8000 °C Eutectic Point = 500 °C at 40 atomic % B Maximum solubility of A in B at 500 °C = 10 atomic % Maximum solubility of B in A at 500 °C = 20 atomic % Limits of solid solution at 300 °C = 10 atomic % in A, 5 atomic % in B Label the phase diagram. Calculate fractions of proeutectoid phase and eutectic mixture at the eutectic temperature for the alloy containing 25 atomic % B. (ii) Draw tin-lead equilibrium diagram. If, for soldering, 85% eutectic mixture is preferred, determine the composition limits of tin that will satisfy this condition 	15	CO3
Q11	 A. Analyze the Pb-Sn Phase diagram and answer the following questions: (i) Write the solubility limit and temperature of eutectic composition. (ii) Write the invariant reaction with phase composition. (iii) Sketch and explain the microstructure evolution of 90% Pb-10% Sn alloy. Composition (at% Sn) 0 	2 2 10	CO4

B.		
(i) A binary alloy having 28 wt % Cu & balance Ag solidifies at 779 °C. The soild consists of two pahses $\alpha \& \beta$. Phase α has 9% Cu whereas phase β has 8% Ag at 779°C. At room temperature these are pure Ag & Cu respectively. Sketch the phase diagram. Label all fields & lines. Melting points of Cu & Ag are 1083 °C & 960 °C respectively. Estimate the amount of $\alpha \& \beta$ in the above	15	
alloy at 779 °C & at room temperature.(ii) Discuss how you will design a sord having hard surface and toughen core.	5	