Name: Enrolment No:		WUP「S	
Progra Course Course Nos. of Instruc Assum	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Supplementary Examination, DEC 2023 me Name $:$ B. Tech-Mechanical Engineering Semester : Name $:$ Material Engineering Time $:$ Code $:$ MEMA2003 Max. Marks : page(s) $: 2$ ans: Attempt all questions. One question from section B and C have an in any missing data if required.	III 03 hrs . 100 ternal	oice.
SECTION A			
S. No.		Marks	CO
Q1	(a) Draw neat sketch of S-N curve for mild steel. (b) Define Hardness.	4	CO1
Q2	Sate Hume Rothery, s rules and discuss in detail	4	CO1
Q3	Draw the scheme of a eutectoid phase diagram of two component system.	4	CO2
Q4	Differentiate brittle and ductile fracture with appropriate examples.	4	$\mathrm{CO3}$
Q5	Explain flame hardening process with neat sketch.	4	CO4
SECTION B			
Q6	(a) Define homogeneous and heterogeneous nucleation. (b) Write the coordination number for BCC, FCC, and HCP unit cell. (c) Define heat treatment process and mentioned its purposes.	$\begin{aligned} & 3 \\ & 3 \\ & 4 \end{aligned}$	CO1
Q7	(a) Explain resilience, yield strength, and ductility. (b) Explain goodman method for combination of stresses.	$\begin{aligned} & 4 \\ & 6 \\ & \hline \end{aligned}$	CO2
Q8	You have a duty to examine a railway wheel after its periodic service. Explain how you will detect the presence of surface cracks and describe the process with a suitable scheme.	$\begin{aligned} & \hline 6 \\ & 4 \end{aligned}$	$\mathrm{CO3}$
Q9	A (i) Define fatigue failure. Neatly sketch the various fatigue loading cycles. (ii) A fatigue test was conducted in which the mean stress was 70 MPa , and the stress amplitude was 210 MPa . (a) Compute the maximum and minimum stress levels. (b) Compute the stress ratio. (c) Compute the magnitude of the stress range. Or B (i) Illustrate the process of measuring endurance limit for structural materials. (ii) Explain with neat sketches the two modes of fracture failure of metal.	5 5	CO2

SECTION-C

Q10	(i) Construct a phase diagram for the system A-B for the following data: Melting point of $\mathrm{A}=1000^{\circ} \mathrm{C}$ Melting point of $\mathrm{B}=8000^{\circ} \mathrm{C}$ Eutectic Point $=500^{\circ} \mathrm{C}$ at 40 atomic \% B Maximum solubility of A in B at $500^{\circ} \mathrm{C}=10$ atomic $\%$ Maximum solubility of B in A at $500^{\circ} \mathrm{C}=20$ atomic $\%$ Limits of solid solution at $300^{\circ} \mathrm{C}=10$ atomic $\%$ in A , 5 atomic \% in B Label the phase diagram. Calculate fractions of proeutectoid phase and eutectic mixture at the eutectic temperature for the alloy containing 25 atomic \% B. (ii) Draw tin-lead equilibrium diagram. If, for soldering, 85% eutectic mixture is preferred, determine the composition limits of tin that will satisfy this condition	15	CO 3
Q11	A. Analyze the $\mathrm{Pb}-\mathrm{Sn}$ Phase diagram and answer the following questions: (i) Write the solubility limit and temperature of eutectic composition. (ii) Write the invariant reaction with phase composition. (iii) Sketch and explain the microstructure evolution of $90 \% \mathrm{~Pb}-10 \% \mathrm{Sn}$ alloy. Composition (at\% Sn) B. Develop the microstructure evaluation of $\mathrm{Pb}-\mathrm{Sn}$ alloy at eutectic composition with its phase composition and relative amount of phase present.	2 2 10 	$\mathrm{CO4}$

	B. (i) A binary alloy having $28 \mathrm{wt} \% \mathrm{Cu} \&$ balance Ag solidifies at $779{ }^{\circ} \mathrm{C}$. The soild consists of two pahses $\alpha \& \beta$. Phase α has $9 \% \mathrm{Cu}$ whereas phase β has $8 \% \mathrm{Ag}$ at $779^{\circ} \mathrm{C}$. At room temperature these are pure $\mathrm{Ag} \& \mathrm{Cu}$ respectively.	15			
Sketch the phase diagram. Label all fields \& lines. Melting points of $\mathrm{Cu} \& \mathrm{Ag}$ are $1083^{\circ} \mathrm{C} \& 960^{\circ} \mathrm{C}$ respectively. Estimate the amount of $\alpha \& \beta$ in the above alloy at $779{ }^{\circ} \mathrm{C} \&$ at room temperature.	5				
(ii) Discuss how you will design a sord having hard surface and toughen core.				$\quad 5$	
:---					

