| Name: <br> Enrolment No: |  | UUPES |  |
| :---: | :---: | :---: | :---: |
| UPES   <br> Supplementary Examination, December 2023   <br> Course : B Tech Automotive Design Engineering   <br> Program : Automotive Manufacturing Assembly Drawing Semester : III  <br> Course Code: MEAD2005 Time :03 hrs.  <br> Nos. of page(s): 02 Max. Marks: 100  <br> Instructions: Assume Data and draw figures and diagrams, wherever required.   |  |  |  |
| $\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$ |  |  |  |
| S. No. |  | Marks | CO |
| Q 1 | Sketch and show the following terms with respect to screw threads: (a) pitch (b) major diameter, (c) lead, (d) root and (e) flank. | 4 | CO1 |
| Q 2 | Draw the symbols for the following flanged pipe fittings: (a) reducing socket, (b) globe valve, (c) lateral, (d) check valve and (e) $45^{\circ}$ elbow. | 4 | CO2 |
| Q 3 | Draw the conventional representation and explain the following: (a) external threads, (b) internal threads | 4 | CO1 |
| Q 4 | Explain how the following threads are designated as per the BIS norms: (a) Knuckle thread and (b) Buttress thread. | 4 | CO2 |
| Q 5 | Describe automotive manufacturing drawing and explain how it can be helpful in automotive industries. | 4 | CO4 |
| $\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx10M}=40 \text { Marks }) \end{gathered}$ |  |  |  |
| Q 1 | Describe the significance of limit, fit and tolerance on machine components and differentiate between clearance fit, interference fit and transition fit. | 10 | CO4 |
| Q 2 | Draw neat sketches and their symbols of the following welded joints: Butt joint, Lap joint, Tee joint, Corner joint and Edge joint. | 10 | CO |
| Q 3 | Draw the view from front of object shown in Fig. 1 and the view from right of the object in Fig. 2. <br> Fig. 1 | 10 | CO 2 |


|  | Fig. 2 |  |  |
| :---: | :---: | :---: | :---: |
| Q 4 | Explain why foundation bolts having importance and where are they used? Sketch neatly, giving proportionate dimensions; the following foundation bolts of diameter 35 mm a) Rag foundation bolt, and (b) Bent foundation bolt. <br> OR <br> Draw the top view, front view and right-side view of a hexagonal nut for a bolt of 25 mm diameter by following the ISO proportions in first angle projection. | 10 | CO1 |
|  | $\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 M=40 \text { Marks }) \end{gathered}$ |  |  |
| Q 1 | A cylinder of 80 mm diameter and 135 mm axis is completely penetrated by a cone of 75 mm diameter and 100 mm long axis horizontally. Both axes intersect \& bisect each other. Draw projections showing curve of intersections. | 20 | CO 3 |
| Q 2 | A cone 25 mm diameter and 50 mm axis is resting on one generator on VP (lying on VP) which is parallel to HP. It is cut by a Vertical section plane through its base center. Draw sectional top view and front view. <br> OR <br> Draw the front, side and top views of the following figure no. 3, with proper dimensioning in first angle projection. <br> Fig. 3 | 20 | CO4 |

