Name:

Enrolment No:

UPES

Supplementary Examination, Dec 2023

Course: Chemistry I Semester: I
Program: B.Tech. Civil + Automotive Design Engineering Time: 03 hrs.
Course Code: CHEM 1011 Max. Marks: 100

Instructions: Read all the instructions below carefully and follow them strictly.

- 1) Mention Roll No. at the top of the question paper.
- 2) Internal choice is given in Q. no. 9 & 10.
- 3) ATTEMPT ALL THE PARTS OF A QUESTION AT ONE PLACE ONLY.

SECTION A (5Ox4M=20Marks)

	(SQX4M=20Marks)		
S. No.		Marks	СО
Q 1	How can you determine the % of C and % of H in any given fuel sample.	4	CO1
Q 2	List out the differences between order and molecularity of a rection.	4	CO2
Q 3	Can we store 1M CuSO ₄ solution in a Zn container? Justify your answer.	4	CO3
Q 4	The equivalent conductance of NH ₄ Cl, NaOH and NaCl at infinite dilution are 149.7, 247.8 and 126.45 Sm ² eq ⁻¹ , respectively. Calculate equivalent conductance for NH ₄ OH at infinite dilution.	4	CO3
Q 5	A polymer polypropylene was found to have the following compositions. a) $-(CH_2-C(CH_3)H)-400$ units 20% b) $-(CH_2-C(CH_3)H)-500$ units 30% c) $-(CH_2-C(CH_3)H)-600$ units 50% Calculate the number average and weight average molecular masses of the polymer (atomic mass of $C=12$, $H=1$)	4	CO5
	SECTION B (4Qx10M= 40 Marks)		
Q 6	Discuss the four different methods for the determination of order of a reaction.	10	CO2
Q 7	The specific reaction rates of chemical reactions at 25° C and 30° C are respectively 4×10^{-5} and 14×10^{-5} s ⁻¹ . Find the activation energy of this reaction.	10	CO2
Q 8	 (i) Differentiate between thermoplastics and thermosetting polymers. (ii) The diffraction pattern of copper metal was measured with X-ray radiation of wavelength of 1.315 Å. The first order Bragg diffraction peak was found at an angle 2Θ of 50.5°. Calculate the d-spacing between the diffracting planes in the copper metal. 	5	CO5

Q 9	A conductivity cell is filled with 0.02M KCl solution at 25°C. Its specific conductance and observed resistance are $27.7 \times 10^{-3} \ \Omega^{-1} \text{cm}^{-1}$ and $17 \ \Omega$, respectively. When the cell is filled with 0.01M solution of another substance, the observed resistance was 57Ω . Calculate equivalent and molar conductance of this substance.	10	CO3
	(i) What is Galvanic corrosion. How can it be prevented. (ii) Discuss various factors affecting the rate of corrosion		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	(i) Exactly 2.9g was weighed in a silica crucible. After heating for one hour at 110°C, the residue weighed 2.528g. The crucible next was covered with a vented lid and strongly heated for exactly 7 minutes at 950±20°C. The residue weighed 1.744g. The crucible was then heated without cover, until a constant weight was obtained. The last residue was found to weigh 0.339g. Calculate the % results of the above analysis. OR		
	Given that the energies for H—H, O=O and O—H bonds are 104, 118 and 111 Kcal/mol respectively, calculate enthalpy change of the following reaction: $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$	10	
	(ii) The following data was obtained in a bomb calorimeter experiment: Weight of the cubicle = 3.649 g, Weight of the crucible + fuel = 4.678 g Water equivalent of the calorimeter = 570 g Water taken in the calorimeter = 2400 g Observed rise in temperature = 2.29°C Cooling correction = 0.054°C Acids correction = 62.6 cal Fuse wire correction = 3.8 cal Cotton thread correction = 1.6 calories.	10	CO1
	Calculate the gross calorific value of the fuel sample. If the fuel contains 6.5% hydrogen, determine the net calorific value assuming latent heat of condensation as 580 cal/g. OR O 257 g of an organic substance was Kieldahlized by heating with cone		
	0.257 g of an organic substance was Kjeldahlized by heating with conc. sulphuric acid and then distilled with excess of strong alkali. The ammonia gas evolved was absorbed in 50 ml of N/10 HCl, which required 23.2 ml of N/10 NaOH for neutralization. Determine the % of nitrogen in the substance.		

Q 11	(i) A 100 ml sample of water required 13.5 ml of 0.02 M EDTA solution for titration using Eriochrome Black T as indicator. Another 100 ml of	10	
	water from the same source was boiled and precipitate removed by filtration. The filtrate required 6 ml of 0.02M EDTA for titration. Calculate the total hardness, permanent hardness, and carbonate		CO4
	hardness of water sample. (ii) Discuss the cold and hot lime soda method used for the softening of hard water.	10	