Name:

**Enrolment No:** 



Semester: V

Time 03 hrs.

Max. Marks: 100

## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

Supplementary Examination, Dec. 2023

Course: Aircraft Structure-I Program: B. Tech ASE/ASE-AVE

Course Code: ASEG 3010

**Instructions:** a) All questions are compulsory.

b) Assume any suitable value for the missing data

c) Q1-Q3 are TRUE/FALSE

## SECTION A

| S. No. |                                                                                                                                                                                                                                                                     | Mar<br>ks | CO  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|
| Q 1    | <ul><li>a) Two bars with same mass has always same strain energy under load</li><li>b) Within the proportional limit, strain energy varies linearly with load</li></ul>                                                                                             | 4         | CO1 |
| Q2.    | <ul><li>c) The Change in slope between any two points on the elastic curve equals the area of the M/EI diagram between both endpoints of the beam.</li><li>d) The method of the section can be applied if the section cuts four members.</li></ul>                  | 4         | CO4 |
| Q3.    | <ul> <li>a) Strain energy method to determine deflection applicable only for all elastic material</li> <li>b) A column is free from both ends, if the column is heated uniformly across length then the column can buckle due to increase in temperature</li> </ul> | 4         | CO3 |
| Q4.    | Compare the critical stresses using Euler's and Rankine's formulae for struts with slenderness ratios 50, Assume that both ends are hinged. E=200 GPa, Rankine's constant = $1/7500$ , and $\sigma_y = 300$ MPa                                                     | 4         | CO4 |
| Q5.    | Two bars are subjected a load of 20KN as shown in fig. below, determine the vertical If the radius of each members is 25 mm and $E = 200 GPa$ . The vertical deflection of point B is                                                                               | 4         | CO2 |

|     | 30° B 50 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
|     | → 2 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |     |
|     | SECTION B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |     |
| Q 6 | For the propped cantiliver beam below determine the support reaction if $M_0$ = 10 KNm and draw the shear force and bending moment.                                                                                                                                                                                                                                                                                                                                                                                              | 10 | CO2 |
| Q7. | Figure shows the cross sections of two aluminum alloy 2114-T6 bars that are used as compression members, each with effective length of L. Find (a) the wall thickness the hollow square bar so that the bars have the same cross-sectional area; (b) the critical load of each bar. Given: $L=3$ m and $E=72$ GPa.                                                                                                                                                                                                               | 10 | CO3 |
| Q8. | An element in plane stress on the fuselage of an airplane (figure part a) is subjected to compressive stresses with a magnitude of 42 MPa in the horizontal direction and tensile stresses with a magnitude of 9.5 MPa in the vertical direction (see figure part b). Also, shear stresses with a magnitude of 15.5 MPa act in the directions shown, Determine the stresses acting on an element oriented at a clockwise angle of 400 from the horizontal. Show these stresses on a sketch of an element oriented at this angle. | 10 | CO3 |

|      | 9.5 MPa<br>15.5 MPa                                                                                                                                                                                                                                                                                                               |    |     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| Q9   | The load on a bolt consists of an axial pull of I0 kN together with a transverse shear force of 6 kN. Calculate the diameter of the bolt according to  (a) Maximum principal strain theory (b) Shear strain energy theory.  Take factor of safety as 2, given yield strength of the material=310 N/mm2 and poisson's ratio = 0.27 | 10 | CO4 |
|      | SECTION-C                                                                                                                                                                                                                                                                                                                         |    |     |
| Q10  | Determine the vertical deflection of point C due to the applied load                                                                                                                                                                                                                                                              | 20 | CO2 |
| Q11. | Analyse the continuous beam as shown below using and draw the SF and BM diagrams.  OR  Analyse the beam and draw the shear force and bending moment diagram.                                                                                                                                                                      | 20 | CO1 |

