Name: Enrolment No:	UPごS		
Cours Progr Cours Instru	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Supplementary Examination, Dec. 2023 Aircraft Structure-I B. Tech ASE/ASE-AVE Code: ASEG 3010 ions: a) All questions are compulsory. b) Assume any suitable value for the missing data c) Q1-Q3 are TRUE/FALSE	: V hrs. rks:	
SECTION A			
S. No.		$\begin{gathered} \text { Mar } \\ \text { ks } \\ \hline \end{gathered}$	CO
Q 1	a) Two bars with same mass has always same strain energy under load b) Within the proportional limit, strain energy varies linearly with load	4	CO1
Q2.	c) The Change in slope between any two points on the elastic curve equals the area of the M / EI diagram between both endpoints of the beam. d) The method of the section can be applied if the section cuts four members.	4	CO4
Q3.	a) Strain energy method to determine deflection applicable only for all elastic material b) A column is free from both ends, if the column is heated uniformly across length then the column can buckle due to increase in temperature	4	CO 3
Q4.	Compare the critical stresses using Euler's and Rankine's formulae for struts with slenderness ratios 50, Assume that both ends are hinged. $\mathrm{E}=200 \mathrm{GPa}$, Rankine's constant $=1 / 7500$, and $\sigma_{y}=300 \mathrm{MPa}$	4	CO4
Q5.	Two bars are subjected a load of 20 KN as shown in fig. below, determine the vertical If the radius of each members is 25 mm and $\mathrm{E}=200 \mathrm{GPa}$. The vertical deflection of point B is	4	CO2

	SECTION B		
Q 6	For the propped cantiliver beam below determine the support reaction if $\mathrm{M}_{0}=10 \mathrm{KNm}$ and draw the shear force and bending moment.	10	CO2
Q7.	Figure shows the cross sections of two aluminum alloy 2114-T6 bars that are used as compression members, each with effective length of L. Find (a) the wall thickness the hollow square bar so that the bars have the same cross-sectional area; (b) the critical load of each bar. Given: $\mathrm{L}=3 \mathrm{~m}$ and $\mathrm{E}=72 \mathrm{GPa}$.	10	CO3
Q8.	An element in plane stress on the fuselage of an airplane (figure part a) is subjected to compressive stresses with a magnitude of 42 MPa in the horizontal direction and tensile stresses with a magnitude of 9.5 MPa in the vertical direction (see figure part b). Also, shear stresses with a magnitude of 15.5 MPa act in the directions shown, Determine the stresses acting on an element oriented at a clockwise angle of 400 from the horizontal. Show these stresses on a sketch of an element oriented at this angle.	10	CO 3

Q9	The load on a bolt consists of an axial pull of I0 kN together with a transverse shear force of 6 kN . Calculate the diameter of the bolt according to (a) Maximum principal strain theory (b) Shear strain energy theory. Take factor of safety as 2 , given yield strength of the material $=310 \mathrm{~N} / \mathrm{mm} 2$ and poisson's ratio $=0.27$	10	CO4
SECTION-C			
Q10	Determine the vertical deflection of point C due to the applied load	20	CO 2
Q11.	Analyze the continuous beam as shown below using and draw the SF and BM diagrams. OR Analyse the beam and draw the shear force and bending moment diagram.	20	CO1

