Name:

Enrolment No:

UPES

Supplementary Examinations, December 2023

Course: Matrices
Program: B.Sc. (Hons.) (Physics/Geology/Chemistry)
Course Code: MATH 1029G
Semester: I
Time: 03 hrs.
Max. Marks: 100

Instructions: Attempt all the questions. Q9 and Q11 have internal choice.

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	CO	
Q1	If the matrix $\begin{bmatrix} x & 2 & x+2 \\ 3 & 5 & 8 \\ x+1 & 7-x & 12 \end{bmatrix}$ is singular, find the value of x .	4	CO1	
Q2	Define the Inverse of a square matrix and hence find the inverse of $A = \begin{bmatrix} 1 & 5 & -2 \\ 3 & -1 & 4 \\ -3 & 6 & -7 \end{bmatrix}$.	4	CO2	
Q3	Examine whether the vectors $x = (3,1,-4)$, $y = (2,2,-3)$ and $z = (0,-4,1)$ are linearly independent or dependent. If dependent, find the relation between them.	4	СОЗ	
Q4	Show that the transformation $y_1 = x_1 + 2x_2 + 5x_3$, $y_2 = -x_2 + 2x_3$ and $y_3 = 2x_1 + 4x_2 + 11x_3$ is regular and hence find its inverse transformation.	4	CO4	
Q5	Define Block matrix a relevant example.	4	CO5	
SECTION B (4Qx10M= 40 Marks)				
Q6	(a) Show that $A = \begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ is skew-Hermitian and also Unitary. (b) If A and B are Hermitian, prove that $AB - BA$ is skew-Hermitian.	10	CO1	
Q7	Solve the system $x + 2y + z = 4$, $2x - 3y - z = -3$, $3x + y + 2z = 3$ using Crout's method.	10	CO3	
Q8	Solve the system of equations $x - y + z = 1$, $-3x + 2y - 3z = -6$ and $2x - 5y + 4z = 5$ using Cramer's rule.	10	CO3	

Q9	Verify the Caley-Hamilton Theorem for $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and hence find A^{-1} . OR Define the minimal polynomial of a matrix. If $A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{bmatrix}$, find its minimal polynomial.	10	CO4	
SECTION-C (2Qx20M=40 Marks)				
Q10	 (a) A direct-current (d.c) circuit comprises three closed loops. Applying Kirchhoff's laws to the closed loops gives the following equations for the current flow in milliampere: 2I₁ + 3I₂ - 4I₃ = 26 I₁ - 5I₂ - 3I₃ = -87 -7I₁ + 2I₂ + 6I₃ = 12 Using Cramer's rule, solve for I₁, I₂ and I₃. (b) Test the consistency and hence solve the following set of equations using the concept of rank. x + 2y - z = 1 3x - 2y + 2z = 2 7x - 2y + 3z = 5 	20	CO2	
Q11	Diagonalize the matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$. (OR) Define eigen values and eigen vectors. Find the eigen values and eigen vectors of $A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$.	20	CO4	