Name: Enrolment No:		UN		
UPES Supplementary Examinations, December 2023 Course: Matrices Semester: I Program: B.Sc. (Hons.) (Physics/Geology/Chemistry) Time: 03 hrs. Course Code: MATH 1029G Max. Marks: $\mathbf{1 0 0}$ Instructions: Attempt all the questions. Q9 and Q11 have internal choice.				
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$				
S. No.			Marks	CO
Q1	If the matrix $\left[\begin{array}{ccc}x & 2 & x+2 \\ 3 & 5 & 8 \\ x+1 & 7-x & 12\end{array}\right]$ is	is singular, find the value of x.	4	CO1
Q2	Define the Inverse of a square matrix $A=\left[\begin{array}{ccc} 1 & 5 & -2 \\ 3 & -1 & 4 \\ -3 & 6 & -7 \end{array}\right]$	rix and hence find the inverse of	4	CO 2
Q3	Examine whether the vectors x $z=(0,-4,1)$ are linearly independent the relation between them.	$x=(3,1,-4), y=(2,2,-3) \quad \text { and }$ or dependent. If dependent, find	4	CO 3
Q4	Show that the transformation $y_{1}=x_{1}$ and $y_{3}=2 x_{1}+4 x_{2}+11 x_{3}$ is regu transformation.	$y_{1}+2 x_{2}+5 x_{3}, \quad y_{2}=-x_{2}+2 x_{3}$ ular and hence find its inverse	4	CO4
Q5	Define Block matrix a relevant exampl		4	$\mathrm{CO5}$
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$				
Q6	(a) Show that $A=\left[\begin{array}{lll}i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0\end{array}\right]$ is skew- (b) If A and B are Hermitian, prove that	-Hermitian and also Unitary. at $A B-B A$ is skew-Hermitian.	10	CO1
Q7	Solve the system $x+2 y+z=4,2 x-3$ using Crout's method.	$-3 y-z=-3,3 x+y+2 z=3$	10	CO3
Q8	Solve the system of equations $x-y$ and $2 x-5 y+4 z=5$ using Cramer's	$y+z=1,-3 x+2 y-3 z=-6$ s rule.	10	CO3

Q9	Verify the Caley-Hamilton Theorem for $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and hence find A^{-1}. OR Define the minimal polynomial of a matrix. If $A=\left[\begin{array}{ccc}4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2\end{array}\right]$, find its minimal polynomial.	10	CO4
	$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$		
Q10	(a) A direct-current (d.c) circuit comprises three closed loops. Applying Kirchhoff's laws to the closed loops gives the following equations for the current flow in milliampere: $\begin{gathered} 2 I_{1}+3 I_{2}-4 I_{3}=26 \\ I_{1}-5 I_{2}-3 I_{3}=-87 \\ -7 I_{1}+2 I_{2}+6 I_{3}=12 \end{gathered}$ Using Cramer's rule, solve for I_{1}, I_{2} and I_{3}. (b) Test the consistency and hence solve the following set of equations using the concept of rank. $\begin{gathered} x+2 y-z=1 \\ 3 x-2 y+2 z=2 \\ 7 x-2 y+3 z=5 \end{gathered}$	20	CO 2
Q11	Diagonalize the matrix $A=\left[\begin{array}{ccc}1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0\end{array}\right]$. (OR) Define eigen values and eigen vectors. Find the eigen values and eigen vectors of $A=\left[\begin{array}{ccc}3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7\end{array}\right]$.	20	CO4

