Name: Enrolment No:			
UPES End Semester Examination, December 2023 Course: Advanced Numerical Techniques Semester: VII Program: B.Sc. Mathematics by Research Time :03 hrs. Course Code: MATH 4011 Max. Marks: 100 Instructions: Answer all the questions.			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	For the matrix $P=\left(\begin{array}{ccc}3 & -2 & 2 \\ 0 & -2 & 1 \\ 0 & 0 & 1\end{array}\right)$, one of the eigen values is -2 . Find the corresponding eigen vector.	4	CO1
Q 2	Obtain the Gershgorin circles for the matrix $A=\left[\begin{array}{ccc}2 & 1 & 3 \\ -1 & 4 & 6 \\ 2 & 3 & 1\end{array}\right]$.	4	CO1
Q 3	Discuss the convergence condition of the iteration method for solving the system of nonlinear equations.	4	CO2
Q 4	Explain Steepest Descent Algorithm.	4	CO2
Q 5	What is a two-point boundary value problem. Discuss the conditions for the existence of unique solution for a two-point boundary value problem.	4	CO3
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	Determine the largest eigen value and the corresponding eigen vector of the matrix $\left[\begin{array}{ccc}1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10\end{array}\right]$ using an appropriate technique.	10	CO1
Q 7	Use Broyden's method to compute $x^{(2)}$ for the nonlinear system $3 x_{1}^{2}-x_{2}^{2}=0,3 x_{1} x_{2}^{2}-x_{1}^{3}-1=0$ using $x^{(0)}=(11)^{T}$.	10	CO2
Q 8	Perform two iterations of the steepest descent method to minimize $f(x, y)=x-y+2 x^{2}+2 x y+y^{2} \quad$ starting from the point $\binom{0}{0}$.	10	CO2

Q 9	Using finite difference approximations, solve the equation $y^{\prime \prime}=x+y$ with the boundary conditions $y(0)=y(1)=0$ with $h=\frac{1}{4}$. (OR) Solve the boundary value problem $y^{\prime \prime}+y+1=0, y(0)=y(1)=0$ for $x=0.5$ by taking $n=4$.	10	CO 3
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	Solve the nonlinear system $x^{2}+x y=10, y+3 x y^{2}=57$ using fixed point iteration technique with initial values $\left(x_{0}, y_{0}\right)=(1.5,3.5)$. (OR) Perform two iterations of Newton's method for solving the system of nonlinear equations $x^{2}+x y+y^{2}=7, x^{3}+y^{3}=9$ by considering the initial approximations as $x_{0}=1.5$ and $y_{0}=0.5$.	20	CO 2
Q 11	Apply Linear shooting technique to solve the boundary value problem $y^{\prime \prime}=-\frac{2}{x} y^{\prime}+\frac{2}{x^{2}} y+\frac{\sin (\log x)}{x^{2}}, 1 \leq x \leq 2$ with conditions $y(1)=1$ and $y(2)=2$. Perform 2 iterations using step size $h=0.1$ (Hint: Use Euler's method to solve the IVPs obtained during the procedure).	20	CO 3

