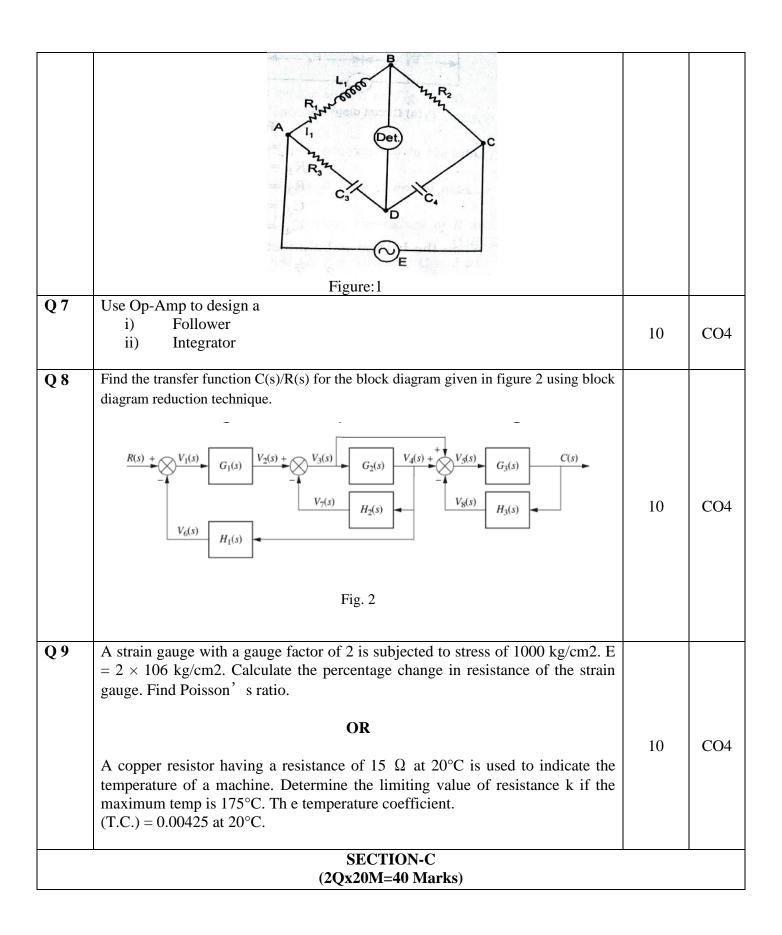
-		-				
	N	•	11	n	Δ	•

Enrolment No:

Semester: VII

UPES

End Semester Examination, December 2023


Course: Instrumentation and Control Program: B.Tech. – Mechanical Engg

Program: B.Tech. – Mechanical Engg Time : 03 hrs.
Course Code: ECEG4036 Max. Marks: 100

Instructions: All questions are to be answered

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	Enumerate the statement "Un – Calibrated Measuring instrument do not have any sanctity"	4	CO1
Q 2	Describe the working principle of a Ph meter		CO1
Q 3	Illustrate the Various Temperature transducers and their applicability		CO1
Q 4	A potentiometer is provided with 50 turns per mm. The gearing arrangement is such that the motion of the main shaft by one resolution crosses 4 resolutions. Determine the potentiometer's resolution.		CO1
Q 5	Describe the working principle of Ultrasonic flowmeter		CO1
	SECTION B (4Qx10M= 40 Marks)		
Q 6	The bridge shown in Figure: 1 is used to measure the properties of a sample of a sheet at 2 kHz. At balance, arm AB is the test specimen; arm BC is R_2 =100 Ω ; arm CD is C_4 = 0.1 μ F and arm DA is R_3 =834 Ω in series with C_3 = 0.124 μ F. 1. Name the bridge and list the parameters that can be used by this bridge. 2. Derive the expression for the measurement of unknown variables. 3. Calculate the effective impedance of specimen under test conditions. 4. Calculate the Q factor of the specimen under test.	10	CO4

Q 10	Develop a mathematical model of below mentioned Automobile suspension system. Center of mass Auto body	20	CO5
Q 11	Signal flow graph is given for a system in figure 3, find the transfer function using Mason's gain formula. $\begin{array}{ccccccccccccccccccccccccccccccccccc$	20	CO4