Name: Enrolment No:		UPES UNIVERSITY OF TOMORROW					
UPES							
End Semester Examination, December 2023 Course: Computational Fluid Dynamics Semester: VII Program: B. Tech ME Time 03 hrs. Course Code: ASEG 4005P Max. Marks: 100							
SECTION A							
S. No.			Marks	CO			
Q 1	Discuss the importance of transformation in CFD.		4	CO1			
Q 2	Discuss on various error sources in CFD.		4	CO2			
Q 3	Analyze the factors and fundamental principles to be considered when making decisions about grid sizing in a CFD simulation.		4	CO3			
Q 4	Elaborate on the strategies employed to optimize the stability of a CFD simulation		4	CO4			
Q 5	Compare finite volume approach with finite difference approach for fluid flow simulations.		4	CO5			
SECTION B							
Q 6	Apply second law of motion to a control volume and hence derive the momentum equation in integral form. Use mathematical theorems to convert it into differential equation form.		10	CO1			
Q 7	Assume a function $u(x)$ as given below: u = 2x Calculate the exact value of $\frac{du}{dx}$ at $x = 2$.	$\frac{\partial x \partial y}{\partial \mathbf{R}}$ $\frac{\partial x}{\partial x} = \frac{\partial x}{\partial x}$ at the same point (x = 2) on grid size of	10	CO2			

Q 8	The 2D inviscid incompressible flow is governed by Laplace equation as given below: $\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0$ Transform the above equation from physical plane (x,y) to computational plane (\varepsilon,\eta).	10	CO3		
Q 9	Emphasis on the formulation of cell centered approach for solving fluid flow problems.	10	CO4		
SECTION-C					
Q 10	Compare implicit approach with explicit approach of solving governing equation. Mention advantages and disadvantages of both the approaches. Formulate the set of mathematical equations using implicit approach for one-dimensional heat conduction equation and hence explain the concept of time marching.		CO4		
Q 11	Formulate the mathematical equations of Lax-Wendroff method for solving fluid flow problems. OR Formulate the mathematical equations of Alternating-Direction-Implicit (ADI) technique for solving fluid flow problems.	20	CO5		