Name:

Enrolment No:

UPES End Semester Examination, December 2023

Course: Hydrology and Water Resources Engineering Program: B Tech Civil Engineering Course Code: CIVL 4067

Semester: VII Time: 03 hrs. Max. Marks: 100

Instructions: Attempt all the questions;

	SECTION A		
	(5Qx4M=20Marks)		
S. No.		Marks	СО
Q 1	Discuss the concept of super safe structures with respect to the probable maximum precipitation.	4	CO1
Q 2	The following are the monthly pan evaporation data (JanDec.) at Krishnarajasagara in a certain year in cm: 16.7, 14.3, 17.8, 25.0, 28.6, 21.4, 16.7, 16.7, 16.7, 21.4, 16.7, 16.7		
	The water spread area in a lake nearby in the beginning of January in that year was 2.80 km^2 and at the end of December it was measured as 2.55 km^2 . Calculate the loss of water due to evaporation in that year. Assume a pan coefficient of 0.7.	4	CO2
Q 3	The mass curve of rainfall of duration 100 min is given below. If the catchment had an initial loss of 0.6 cm and a φ -index of 0.6 cm/h, calculate the total surface runoff from the catchment.		
	Time from start of rainfall (min) 0 20 40 60 80 100 Cummulative rainfall (cm) 0 0.5 1.2 2.6 3.3 3.5	4	CO2
Q 4	Highlight the importance of drip irrigation with reference to Indian irrigation practices.	4	CO3
Q 5	What is the classification of irrigation water having the following characteristics: Concentration of Na , Ca and Mg are 44 , 1 and 2 milli-equivalents per litre respectively, and the electrical conductivity is 1800 micro mhos per cm at 25°C? What problems might arise in using this water on fine textured soils?	4	CO3
	SECTION B		
	(4Qx10M= 40 Marks)		

Q 6	A catchment has four sub-areas. The annual precipitation and evaporation from each of the sub-areas are given below. Assume that there is no change in the groundwater storage on an annual basis and calculate for the whole catchment the values of annual average (i) precipitation, and (ii) evaporation. What are the annual runoff coefficients for the sub-areas and for the total catchment taken as a whole?					
	Sub-Area	Area Mm ²	Annual Precipitation (mm)	Annual Evaporation (mm)	10	C01
	Α	10.7	1030	530		
	В	3	830	438		
	С	8.2	900	430		
	D	D 17		600		
			OR	1		
Q 6	The measured values of infiltration rate in an infiltrometer test are as follows:					
	Time (h)Infiltrationrate(cm/h)	0.25 0.5 5.6 3.2	0.75 1 1.25 2.1 1.5 1.2	1.5 1.75 2 1.1 1.0 1.0	10	C01
	Estimate the parameters of Horton's and Phillip's equations for infiltration and compare the computed rate of infiltration by developed equations with the observed one.					
Q 7	The 6-h unit hydrograp shape with a base width Derive the coordinates of	10	CO2			
Q 8	An analysis of annual flood series of a stream indicated the mean value and standard deviation of the flood series as 940 m ³ /s and 203 m ³ /s respectively. What is the magnitude of a flood of return period of 500 years in this stream? Assume that the annual flood series follow Gumbel's distribution and the sample size is very large.					CO2
Q 9	After how many days	After how many days will you supply water to the soil in order to ensure sufficient irrigation of the given crop if:				
	P.W.P.	= 28 / 6 = 13%				

	Density of soil	= 1.3 g/co	2									
	Effective depth of re	oot zone =	= 700mı	n								
	Cu =	= 12mm										
			SECTIO									
		· •	x20M=4		,							
Q 10	 a) Design an irrigation channel for a discharge of 100 m³/s and silt factor 2.5 using Laceys's theory. Also, tell the limitation of Kennedy's theory. b) Design an irrigation canal for the given data: Discharge = 80 cumecs CVR = 1.0 							10 + 10	CO4			
	iii. Longitudinal B											
	iv. Kutter's rugosit	ty coeffici										
			OF	ł								
0.10	A		• • • • • • • • • • • • • • • • • • • •	1 4			· 1					
Q 10	A most efficient trapezoidal section is required to give a maximum discharge of 50 cumecs. The slope of the channel bottom is 1 in 2000 . Taking C as 60 (Chezy's constant), determine the dimensions of the channel. Also, determine the value of Manning's n taking the velocity of flow as obtained for the channel by Chezy's Equation.					20	CO4					
Q 11	a) The following table shows the observed annual rainfall and the corresponding annual runoff for a small catchment. Develop the rainfall-runoff correlation equation for this catchment and find the correlation coefficient. What annual runoff can be expected from this catchment for an annual rainfall of 100 cm?											
	Year	1964	1965	1966	1967	1968	1969	15+5	CO1			
	Annual Rainfall (cm) Annual Runoff (cm) Year Annual Rainfall (cm) Annual Runoff (cm)	90.5 30.1 1970 147.6 64.7	111.0 50.2 1971 50.9 6.5	38.7 5.3 1972 120.2 46.1	129.5 61.5 1973 90.3 36.2	145.5 74.8 1974 65.2 24.6	99.8 39.9 1975 75.9 20.0	13+3				
	b) Explain a procedure	for supple	menting	g the mi	ssing rai	nfall da	.ta.					