Name:

Enrolment No:

University of Petroleum and Energy Studies End Semester Examination, December 2023

Program Name: B. Tech (CERP) Course name: Transport Phenomena Course Code: CHCE4017 Note: Assume suitable data wherever necessary Semester: VII Time: 3hrs. Max. Marks: 100

Attempt all the questions. All questions carry equal marks. Section - A				
S. No.	Section - A	Marks	CO	
Q1	 Describe Newtonian and Non-Newtonian fluids. Find the stress components of Newtonian fluid for the following velocity distribution. A) v_x = -1/2 bx, v_y = -1/2 by, v_z = bz B) v_x = -by, v_y = bx, v_z = 0 	6+6	C01	
Q2	A furnace wall is made of composite wall of total thickness 550mm. The inside layer is made of refractory material (K = 2.3 W/mK) and outside layer is made of an insulating material (K = 0.2 W/m-K). The mean temperature of the glass inside the furnace is 900°C and interface temperature is 520°C. The heat transfer coefficient between the gases and the inner surface is taken as 230 W/m ² °C and between the outside surface and atmosphere as 46 W/m ² °C. Taking air temperature as 30°C, calculate (i) required thickness of each layer, (ii) the rate of heat loss per square meter area.	12	CO4	
Q3	Explain Fourier's law of heat conduction. Summarize different modes of heat transfer.	12	CO3	
Q4	Show that for equimolar counter diffusion $D_{AB} = D_{BA}$ (Diffusivity)	12	CO5	
Q5	A semi-infinite body of liquid with constant density and viscosity is bounded below by a horizontal surface (the xz-plane). Initially the fluid and the solid are at rest. Then at time $t = 0$ the solid surface is made to oscillate in the positive x direction with frequency ω with velocity $v_0 \sin(\omega t)$. Express the velocity v_x , as a function of y and t. There is no pressure gradient or gravity force in the x direction, and the flow is presumed to be laminar.	12	CO4	
	Section – B			
0((Answer all questions)			
Q6	Flow of film on the outside of a circular tube (see figure). In a gas absorption experiment a viscous fluid flows upward through a small circular tube and then downward in laminar flow on outside. Obtain the velocity distribution and mass flow rate of falling film.	20	CO2	

	Velocity distribution inside tube z-Momentum into shell of thickness Δr z_{r}		
Q7	Derive rate of mass transfer for the diffusion of component A through a stagnant gas film of liquid B. Use shell balance approach.	20	CO6

Appendix:

The Equation of continuity:

$$[\partial \rho / \partial t + (\nabla \cdot \rho \mathbf{v}) = 0]$$

Cartesian coordinates (x, y, z):

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} \left(\rho v_x \right) + \frac{\partial}{\partial y} \left(\rho v_y \right) + \frac{\partial}{\partial z} \left(\rho v_z \right) = 0$$

Cylindrical coordinates (r, θ, z) :

$$\frac{\partial \rho}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} (\rho r v_r) + \frac{1}{r} \frac{\partial}{\partial \theta} (\rho v_\theta) + \frac{\partial}{\partial z} (\rho v_z) = 0$$

Spherical coordinates (r, θ, ϕ) :

$$\frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(\rho r^2 v_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\rho v_\theta \sin \theta \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \left(\rho v_\phi \right) = 0$$

Equation of motion for the Newtonian Fluid with constant density and constant viscosity:

 $\frac{Cartesian \ coordinates \ (x, y, z):^{d}}{\rho\left(\frac{\partial v_{x}}{\partial t} + v_{x} \frac{\partial v_{x}}{\partial x} + v_{y} \frac{\partial v_{x}}{\partial y} + v_{z} \frac{\partial v_{x}}{\partial z}\right)} = -\frac{\partial p}{\partial x} + \left[\frac{\partial}{\partial x} \tau_{xx} + \frac{\partial}{\partial y} \tau_{yx} + \frac{\partial}{\partial z} \tau_{zx}\right] + \rho g_{x}}{\rho\left(\frac{\partial v_{y}}{\partial t} + v_{z} \frac{\partial v_{y}}{\partial x} + v_{y} \frac{\partial v_{y}}{\partial y} + v_{z} \frac{\partial v_{y}}{\partial z}\right)} = -\frac{\partial p}{\partial y} + \left[\frac{\partial}{\partial x} \tau_{xy} + \frac{\partial}{\partial y} \tau_{yy} + \frac{\partial}{\partial z} \tau_{zy}\right] + \rho g_{y}}{\rho\left(\frac{\partial v_{z}}{\partial t} + v_{x} \frac{\partial v_{z}}{\partial x} + v_{y} \frac{\partial v_{z}}{\partial y} + v_{z} \frac{\partial v_{z}}{\partial z}\right)} = -\frac{\partial p}{\partial z} + \left[\frac{\partial}{\partial x} \tau_{xz} + \frac{\partial}{\partial y} \tau_{yz} + \frac{\partial}{\partial z} \tau_{zz}\right] + \rho g_{z}}$

Cartesian coordinates (x, y, z):

$$\rho \left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} \right) = -\frac{\partial p}{\partial x} + \mu \left[\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right] + \rho g_x$$

$$\rho \left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} \right) = -\frac{\partial p}{\partial y} + \mu \left[\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2} \right] + \rho g_y$$

$$\rho \left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2} \right] + \rho g_z$$

Cylindrical coordinates (r, θ, z) :^b

$$\rho \left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} - \frac{v_{\theta}^2}{r} \right) = -\frac{\partial p}{\partial r} + \left[\frac{1}{r} \frac{\partial}{\partial r} (r\tau_r) + \frac{1}{r} \frac{\partial}{\partial \theta} \tau_{\theta r} + \frac{\partial}{\partial z} \tau_{zr} - \frac{\tau_{\theta \theta}}{r} \right] + \rho g_r$$

$$\rho \left(\frac{\partial v_{\theta}}{\partial t} + v_r \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} + v_z \frac{\partial v_{\theta}}{\partial z} + \frac{v_r v_{\theta}}{r} \right) = -\frac{1}{r} \frac{\partial p}{\partial \theta} + \left[\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \tau_{r\theta}) + \frac{1}{r} \frac{\partial}{\partial \theta} \tau_{\theta \theta} + \frac{\partial}{\partial z} \tau_{z\theta} + \frac{\tau_{\theta r} - \tau_{r\theta}}{r} \right] + \rho g_{\theta}$$

$$\rho \left(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial p}{\partial z} + \left[\frac{1}{r} \frac{\partial}{\partial r} (r\tau_{rz}) + \frac{1}{r} \frac{\partial}{\partial \theta} \tau_{\theta z} + \frac{\partial}{\partial z} \tau_{zz} \right] + \rho g_z$$

Cylindrical coordinates (r, θ, z) :

$$\begin{split} \rho \bigg(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + v_z \frac{\partial v_r}{\partial z} - \frac{v_\theta^2}{r} \bigg) &= -\frac{\partial p}{\partial r} + \mu \bigg[\frac{\partial}{\partial r} \bigg(\frac{1}{r} \frac{\partial}{\partial r} (rv_r) \bigg) + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{\partial^2 v_r}{\partial z^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} \bigg] + \rho g_r \\ \rho \bigg(\frac{\partial v_\theta}{\partial t} + v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + v_z \frac{\partial v_\theta}{\partial z} + \frac{v_r v_\theta}{r} \bigg) &= -\frac{1}{r} \frac{\partial p}{\partial \theta} + \mu \bigg[\frac{\partial}{\partial r} \bigg(\frac{1}{r} \frac{\partial}{\partial r} (rv_\theta) \bigg) + \frac{1}{r^2} \frac{\partial^2 v_\theta}{\partial \theta^2} + \frac{\partial^2 v_\theta}{\partial z^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} \bigg] + \rho g_\theta \\ \rho \bigg(\frac{\partial v_z}{\partial t} + v_r \frac{\partial v_z}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_z}{\partial \theta} + v_z \frac{\partial v_z}{\partial z} \bigg) &= -\frac{\partial p}{\partial z} + \mu \bigg[\frac{1}{r} \frac{\partial}{\partial r} \bigg(r \frac{\partial v_z}{\partial r} \bigg) + \frac{1}{r^2} \frac{\partial^2 v_z}{\partial \theta^2} + \frac{\partial^2 v_\theta}{\partial z^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \theta} \bigg] + \rho g_\theta \end{split}$$

Spherical coordinates (r, θ, ϕ) :^c

$$\begin{split} \overline{\rho} & \left(\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial v_r}{\partial \phi} - \frac{v_\theta^2 + v_\phi^2}{r} \right) = -\frac{\partial p}{\partial r} \\ & + \left[\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \tau_{rr}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\tau_{\theta r} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \tau_{\phi r} - \frac{\tau_{\theta \theta} + \tau_{\phi \phi}}{r} \right] + \rho g_r \\ \rho & \left(\frac{\partial v_\theta}{\partial t} + v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial v_\theta}{\partial \phi} + \frac{v_r v_\theta - v_\phi^2 \cot \theta}{r} \right) = -\frac{1}{r} \frac{\partial p}{\partial \theta} \\ & + \left[\frac{1}{r^3} \frac{\partial}{\partial r} (r^3 \tau_{r\theta}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\tau_{\theta \theta} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \tau_{\phi \theta} + \frac{(\tau_{\theta r} - \tau_{r\theta}) - \tau_{\phi \phi} \cot \theta}{r} \right) + \rho g_\theta \\ \rho & \left(\frac{\partial v_\phi}{\partial t} + v_r \frac{\partial v_\phi}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\phi}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi} + \frac{v_\phi v_r + v_\theta v_\phi \cot \theta}{r} \right) = -\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi} \\ & + \left[\frac{1}{r^3} \frac{\partial}{\partial r} (r^3 \tau_{r\phi}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\tau_{\theta \phi} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \tau_{\phi \phi} + \frac{(\tau_{\phi r} - \tau_{r\phi}) + \tau_{\phi \theta} \cot \theta}{r} \right] + \rho g_\phi \end{split}$$