Name:

Enrolment No:

UPES End Semester Examination, Dec. 2023

Program: B.Tech. (APE-UP) Course: Geomechanics Course Code: PEAU 4025 Nos. of page(s): 03 Instructions: All questions are compulsory **Note: Graph Sheet is required for few Question Semester: VII Time: 03 hrs. Max. Marks: 100

SECTION A

S. No.		Marks	СО		
Q 1	Enumerate the general assumptions for analysis of stresses around a wellbore.	4 CO1			
Q 2	Describe E. M. Anderson's faulting theory with suitable stress relations and neat sketch.	4 CO1			
Q 3	Define the following: (a) Geomechanical Earth Model (GEM) (b) Stress and Strain (c) 2-D Mohr's Circle (d) Model calibration	4	CO1		
Q 4	 (a) If the Poisson's ratio is given as 0.3 and the Young's modulus is given to 7 X 10¹⁰. What will be the value for shear modulus? (b) The state of stress at a point under plane stress condition is σx = 40 MPa, σy = 100 MPa and τxy = 40 MPa. Determine the radius of the Mohr's circle representing the given state of stress in MPa is 	2+2	СО3		
Q 5	Describe the correlation between well bore fracture and collapse pressure with suitable formulations.	4	CO2		
	SECTION B				
Q 6	Explain the following with suitable formulation: (a) Correlation between linear stress and strain components in cartesian and in-situ coordinate system. (b) Correlation between linear stress and strain components in cartesian and cylindrical coordinate system. OR Write detailed notes on the following with suitable examples? (a) 3-D Geomechanical Earth Model (b) 4-D Geomechanical Earth Model	5+5	CO1		
Q 7	Discuss any two-pore pressure prediction method with associated formulations	10	CO2		

Q 8A rectangular block of material is subjected to a tensile stress of 110 N/mm² on one plane and a tensile stress of 47 N/mm² on the plane at right angles to the former. Each of the above stresses is accompanied by a shear stress of 63 N/mm² and that associated with the former tensile stress tends to rotate the block anticlockwise. Find: (i) The direction and magnitude of each of the principal stress and (ii) Magnitude of the greatest shear stressQ 9Describe the following sand production prediction methods:	6+4	CO2
(a) Wellsite Engineering Method(b) Stress-strain model	10	CO3
SECTION-C		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	20	CO4

					-		
	12	0.2					
	$\nu_{13} =$						
	$\nu_{21} = 0$						
	$\nu_{23} =$						
	$\nu_{31} =$						
	$\nu_{32} =$						
	Calculate th						
Q 11	(a) Derive 1						
	following:						
	(i) She	ar stress					
	(ii) Nor	mal Stress					
		ation between triaxial stress					
	(iv) Con						
	(b) The following data is given for a vertical well drilled.						
	• •						
	$\sigma v = 10 MF$						
	$\sigma H = \sigma h = 9$ P0 = 5 MPa						
	$\mu = 0.3$						
	Determine 1						
	(a) Fracture						
	(b) Fracture						
		10+10	CO3				
		OR					
	The stress i	in a granitic rock mass has beer	n measured by the hydraulic				
	fracturing t						
		a depth of 500 m, and the othe	r test at a depth of 1000 m.				
		were as follows:					
	Depth	Breakdown pressure, P _B	Shut-in pressure, Ps				
	(m)	(MPa)	(MPa)				
	500	14.00	8.00				
	1000	24.50 the tensile strength, σ_t , of the roc	16.00				
	(a) Estimate						
	all the						
	estimate (b) State wh						
	Justify your						
	Justify you						