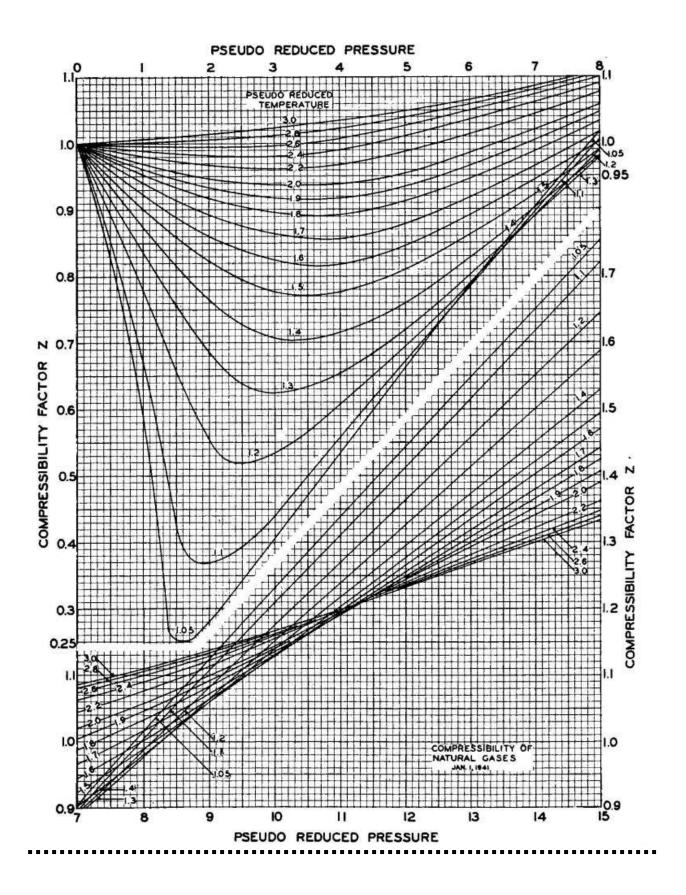
Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES


End Semester Examination, December 2023

Program Name :	B.Tech APE Gas
Course Name :	Pipeline Transportation of Oil and Gas
Course Code :	PEAU3135
Nos. of page(s) :	04

Semester : VII Time : 3 hrs Max. Marks: 100

	puge(b) · · ·			ection A 2=60 Marks	\$)			
S. No.							Marks	CO
Q 1	A natural gas mixture consists of the following components:						12	CO1
	Component	Mole fraction y	Mi	Pci	Tci			
	C1	0.780	16.04	667.00	343.34			
	C ₂	0.005	30.07	707.80	550.07			
	C ₃	0.002	44.10	615.00	665.93			
	N ₂	0.013	28.01	492.80	227.52			
	CO ₂	0.016	44.01	1070.00	547.73			
	H ₂ S	0.184	34.08	1300.00	672.40			
	Calculate the apparent molecular weight of the gas, gas gravity, and the compressibility factor of the gas at 90°F and 1200 psia.							
Q 2	-							CO2
Q 2		A gas pipeline, with an inside diameter of 476 mm, transports natural gas (specific gravity=0.6) and viscosity is 0.00012 poise at a flow rate of 7.5 Mm ³ /day at an inlet						02
	temperature of 15°C. Assuming isothermal flow, calculate the velocity of gas at the							
	inlet and outlet of the pipe and the Reynolds number if the inlet pressure is 7 MPa and							
	the outlet pressure is 6 MPa. The base pressure and base temperature are 0.1 MPa and							
	15°C.							
Q 3	a) Discuss the four stages of the drilling procedure.					(06+06)	CO3	
	b) Illustrate with a neat sketch of separating the condensate from the raw natural gas.							
Q 4	Compare reci	iprocating and centrif	ugal pump	s and discus	ss pump hea	d versus flow rate.	12	CO4
Q 5	a) Explain the consequences of corrosion and its chemistry.					12	CO5	
	b) Summarize the factors that control the corrosion rate.							
			Sect	ion B				
			(2x20=4)	0 Marks)				
Q 6	a) A steel pipeline of 500 mm outside diameter, 10 mm wall thickness is used to						(10+10)	CO3
	transport heavy crude oil at a flow rate of 800 m ³ /hr at 100°C. Using the Shell-MIT							&
	equation calculate the friction loss per kilometer of pipe assuming an internal pipe							CO4
	roughness of 0.05 mm and calculate the head loss in 3000 ft of this pipe. The heavy							

	crude oil has a specific gravity of 0.89 at 100°C and a viscosity of 120 cSt at 100°C.Hazen Willimas Factor C=140.b) Analyze the guiding points for finalizing the preliminary route for laying down the pipeline.		
Q 7	a) Describe pigging, the type of pigs, and the reasons for pigging operations in a pipeline.b) Explain the principle, working, and installation of a Galvanic sacrificial anode with	(10+10)	CO5
	a neat sketch.		

