Name: Enrolment No:			
End Semester Examination, Dec 2023 Course: Mathematical Modelling and Simulation Semester: VII Program: B.Tech ASE+AVE Time $: 03 \mathrm{hrs}$. Course Code: AVEG 4010 Max. Marks: 100 Instructions: Use of graphs sheet allowed.			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	Obtain a state model for the Mechanical system shown below:	4	CO1
Q 2	The differential equation for the constrained center of gravity pitching an airplane is computed to be $\ddot{\alpha}+2 \dot{\alpha}+25 \alpha=0$ Find the natural frequency ω_{n} and damping ratio ζ	4	CO1
Q 3	What are the applications of root locus method?	4	CO2
Q4	A unity feedback system is characterized by the open-loop transfer function as $G(s)=\frac{1}{s(0.5 s+1)(0.2 s+1)}$ Determine the steady-state errors for unit-step and unit ramp.	4	CO 3
Q5	Construct state model for the following differential equation $2 \ddot{y}+3 \ddot{y}+5 \dot{y}+2 y=u$	4	CO4

$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	The Dutch roll motion can be approximated using the following equations: $\left[\begin{array}{c} \Delta \dot{\beta} \\ \Delta \dot{r} \end{array}\right]=\left[\begin{array}{cc} \frac{Y_{\beta}}{u_{0}} & -\left(1-\frac{Y_{r}}{u_{0}}\right) \\ N_{\beta} & N_{r} \end{array}\right]\left[\begin{array}{c} \Delta \beta \\ \Delta r \end{array}\right]+\left[\begin{array}{c} \frac{Y_{\delta_{r}}}{u_{0}} \\ N_{\delta_{r}} \end{array}\right] \Delta \delta_{r}$ Assume the coefficient in the plant matrix have the following numerical values: 1) Determine the Dutch roll eigen values. 2) What is the damping ratio and undamped natural frequency?	10	CO1
Q 7	Draw the complete root locus for the system with $G(s)=\frac{K(s+12)}{s^{2}(s+20)}$.	10	CO2
Q 8	unity feedback system is characterized by the open-loop transfer function. $G(s)=\frac{1}{s(0.5 s+1)(0.2 s+1)}$ Determine the steady-state errors for unit-step, unit ramp and unit acceleration input.	10	CO 3
Q 9	Find the state transition matrix $\Phi(\mathrm{t})$, the characteristic equation and the eigen value of A and Stability for the following linear time-invariant systems. $A=\left[\begin{array}{cc} 0 & 1 \\ -3 & -2 \end{array}\right], \quad \mathrm{B}=\left[\begin{array}{l} 0 \\ 1 \end{array}\right]$ OR $A=\left[\begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array}\right], \mathrm{B}=\left[\begin{array}{l} 1 \\ 0 \end{array}\right]$	10	CO4

$\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q 10	a) Derive the Transformation matrix from body fixed axis system into earth fixed axes system. b) A gliding parachute is flying at $\psi=10 \mathrm{deg}, \theta=5 \mathrm{deg}$, and $\phi=10 \mathrm{deg}$. The on board accelerometers record $a_{z b}=1.2 \mathrm{~m} / \mathrm{s}^{2}, a_{y b}=2 \mathrm{~m} / \mathrm{s}^{2}$, and $a_{x b}=-2 \mathrm{~m} / \mathrm{s}^{2}$. Determine the components of accelerations in earth fixed axes system.	20	CO 3
Q 11	Given the second order differential equation. $\frac{d c(t)}{d x}+2 \frac{d y}{d x}+3 \mathrm{c}(\mathrm{t})=\mathrm{r}(\mathrm{t})$ having the initial conditions $\mathrm{c}(0)=1$ and $\mathrm{dc} / \mathrm{dt}(0)=0$. a) write the equation in state space form. b) Find the state transition matrix. c) Determine the solution if $r(t)$ is a unit step function. OR Obtain the state transition matrix and the response of the system if the input signal is a unit step function. $\left[\begin{array}{l} \dot{x}_{1} \\ \dot{x}_{2} \end{array}\right]=\left[\begin{array}{cc} 0 & 1 \\ -1 & -2 \end{array}\right]\left[\begin{array}{l} x_{1} \\ x_{2} \end{array}\right]+\left[\begin{array}{c} 1 \\ -1 \end{array}\right] u$ With the initial conditions $\begin{aligned} & {\left[\begin{array}{l} x_{1}(0) \\ x_{2}(0) \end{array}\right]=\left[\begin{array}{l} 0 \\ 1 \end{array}\right],} \\ & y=\left[\begin{array}{ll} 0 & 1 \end{array}\right]\left[\begin{array}{l} x_{1} \\ x_{2} \end{array}\right] \end{aligned}$	20	CO4

