Name:

Enrolment No:

UPES

End Semester Examination, December 2023

Course: Control Engineering Program: BTech ADE

Course Code: MECH 4034P

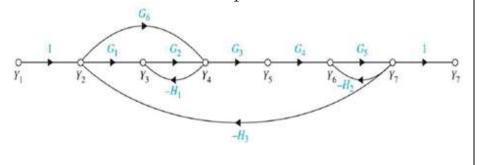
Semester: VII Time: 03 hrs.

Max. Marks: 100

CO₂

10

Instructions: Attempt all questions.


SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	Determine the poles and zeros of the given transfer function. Also comment on the stability of the system. $G(s) = \frac{(s+3)(s+8)}{(s+5)(s-4)(s-2)}$	4	CO3
Q 2	Define the closed loop control system by an example.	4	CO1
Q 3	Define the steady state error in the system for the unity feedback control system.	4	CO1
Q 4	Explain the time response parameters of any feedback control system.	4	CO2
Q 5	Using the Routh-Hurwitz criterion, determine the stability of the system that has the following characteristic equations. $s^3 + 25 s^2 + 10 s + 450 = 0$	4	CO3

SECTION B

(4Qx10M=40 Marks)

Q 6 Apply the Mason's gain rule to signal flow graph as shown in figure, to determine the transfer function $\frac{Y_7}{Y_1}$.

Q 7	Determine the time response of the given system model for unit step input and comment on the stability of the system. $\ddot{y}(t) + 8\dot{y}(t) + 16y(t) = u(t)$	10	CO2		
Q 8	Determine the input-output transfer function (Y/R) of the system by reduce the block diagram.	10	CO2		
Q 9	Given the forward-path transfer function of unity-feedback control systems, apply the Routh-Hurwitz criterion to determine the stability of the closed-loop system as a function of K . $G(s) = \frac{K(s+4)(s+20)}{s^3(s+100)(s+500)}$ Or, Determine the range of feedback gains so that closed loop system will be stable. The transfer function of the system is given as $G(s) = \frac{(s-5)}{(s^2+s+1)(s+10)}$	10	CO3		
	SECTION-C (2Qx20M=40 Marks)				
Q 10	A unity-feedback control system has the forward-path transfer functions given in the following. Construct the complete root-locus diagram for $0 \le K \le \infty$. Find the values of K at all the breakaway points. $G(s) = \frac{K(s+3)}{s(s^2+4s+4)(s+5)(s+6)}$ Or,	20	CO3		

	The feedforward transfer function of a unity-feedback system is $G(s) = \frac{K(s+2)^2}{(s^2+4)(s+5)^2}$ a) Construct the root loci for $K=25$. b) Find the range of K value for which the system is stable.		
Q 11	Draw the Nyquist plot and determine the range of stable gains for the given forward-path transfer function of the system. $G(s) = \frac{(s+5)}{(s+2)(s^2+2s+2)}$	20	CO4