Name: **Enrolment No:** ### **UPES** ## **End Semester Examination, December 2023** **Course: Fundamentals of Group theory** **Semester: VII** **Program:** B.Sc. (Chemistry by Research) Time : 03 hrs. Course Code: CHEM4012 Max. Marks: 100 #### **Instructions:** 1. Write your enrolment number on the top left of the question paper - 2. Do not write any thing else on the question paper except your enrolment number - 3. Attempt all part of a question at one place only - 4. Internal choice is given for question number 9of Section B and question number 11 of Section C only # SECTION A (5Qx4M=20Marks) | S. No. | | Marks | СО | |--------|--|-------|-----| | Q 1 | Discuss The Great orthogonality theorem and its application | 4 | CO1 | | Q 2 | Determine r _{3N} for the following molecules or ions:
(a) NH ₃ (C _{3v}) (b) WF ₅ Cl (C _{4v}) | 4 | CO2 | | Q 3 | Assign the point group of the following compounds: (a) XeF ₄ (b) C ₆ H ₆ | 4 | CO2 | | Q 4 | Elaborate different types of symmetry elements present in [PtCl ₄] ²⁻ | 4 | CO3 | | Q 5 | Calculate the Character of the following symmetry operation. a) σ_{xz} b) S_6 C) C_4 | 4 | CO2 | ### **SECTION B** (4Qx10M = 40 Marks) ## (Question No. 6, 7 and 8 are Compulsory); attempt any one from question no 9 | Q 6 | Obtain the irreducible components of the following reducible | | | |-----|--|----|-----| | | representations (use the character tables): | 10 | CO3 | | | (a) T_d (b) C_{2v} | | | | Q 7 | Deduce the matrix representation for the identity rotational operation and reflectional operation, rotational—reflectional operation and inversion. | 10 | CO3 | | |---|--|--------|-----|--| | Q 8 | Elaborate all the forbidden transition in C3V and C2V | 10 | CO4 | | | Q 9 | Construction of character table for C2v point group OR | 10 | CO3 | | | | How are the irreducible representation symbolized? Write the reduction formula and explain with examples? | | | | | SECTION-C (2Qx20M=40 Marks) (Question No. 10 Compulsory); attempt any one from question no 11 | | | | | | Q 10 | (a) Explain IR and Raman active mode in RuO₄. (b) Consider an octahedral molecule XY₆ whose point group is O_h. Prove the irreducible representation of O_h is Γ = A_{1g} + E_g + T_{1u}. | 10+ 10 | CO4 | | | Q 11 | (a) Find the irreducible components of the representations generated by a set of five d-orbitals in environments of C2v (b) Explain elements of symmetry and symmetry operations. OR | 20 | CO3 | | | | Construct SALCs corresponding to bond stretches, and in- and out-of-plane bending modes for BF3 (D _{3h}) | | | |