Name: Enrolment No:					
UPES End Semester Examination, December 2023 Course: Numerical Methods in Scientific Computing Semester: VII Program: BSc (Physics) by Research Time $: 03$ Course Code: PHYS 4024P Max. Marks: 100 Instructions:					
$\begin{gathered} \text { SECTION A } \\ (5 Q \times 4 \mathrm{M}=20 \mathrm{Marks}) \end{gathered}$					
S. No.				Marks	CO
Q1	Discuss the importance of interpolation in Scientific Computing. What is the error in polynomial interpolation schemes?			4	CO1
Q2	Using finite differencing, write the expressions for following derivatives: a) $\frac{\partial^{2} f}{\partial x^{2}}$ b) $\frac{\partial^{2} f}{\partial x \partial y}$			4	CO1
Q3	What is a positive definite matrix? Check if the given matrix is positive definite or not?$A=\left[\begin{array}{ccc} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{array}\right]$			4	CO1
Q4	Differentiate between composite integration and Gauss quadrature.			4	CO1
Q5	Find the spectral radius of the following matrix:$\left[\begin{array}{ccc} 3 & 2 & -1 \\ 1 & -2 & 3 \\ 2 & 0 & 4 \end{array}\right]$			4	CO1
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Q} \times 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$					
Q6	Using Hermite interpolation, approximate a function passing through the following data: If $P(x)$ is the approximate polynomial, find $P(0.13)$. OR			10	$\mathrm{CO3}$

	Construct a Natural cubic spline for the following data: If $Q(x)$ is the approximate function passing through the above data, find $Q(0.25)$				
Q7	A particle of mass m moving through a fluid is subjected to a viscous resistance R, which is a function of the velocity v. The relationship between the resistance R, velocity v, and time t is given by the equation $t=\int_{v\left(t_{0}\right)}^{v(t)} \frac{m}{R(u)} d u$ Suppose that $R(u)=-v \sqrt{v}$ for a particular fluid, where R is in newtons and v is in m / s. If $m=10 \mathrm{~kg}$ and $v\left(t_{0}\right)=10 \mathrm{~m} / \mathrm{s}$, approximate the time required for the particle to slow to $v=5 \mathrm{~m} / \mathrm{s}$.	10	CO4		
Q8	Water flows from an inverted tank with circular orifice at the rate $\frac{d x}{d t}=-0.6 \pi r^{2} \sqrt{2 g} \frac{\sqrt{x}}{A(x)}$ where r is the radius of the orifice, x is the height of the liquid from the vertex of the cone, and $A(x)$ is the area of the cross-section of the tank with x units above the orifice. Suppose $r=0.1 \mathrm{ft}, g=32.1 \mathrm{ft} / \mathrm{s}^{2}$, and the tank has an initial water level of 8 ft and initial volume $512(\pi / 3)$ ft^{3}. Use RK2 method to find the water level after 10 minutes with $h=$ 20 sec .	10	CO4		
Q9	Use Newton method to solve the following system of non-linear equations: $\begin{gathered} 6 x_{1}-2 \cos \left(x_{2} x_{3}\right)-1=0 \\ 9 x_{2}+\sqrt{x_{1}^{2}+\sin x_{3}+1.06}+0.9=0 \\ 60 x_{3}+3 e^{-x_{1} x_{2}}+10 \pi-3=0 \end{gathered}$ Find out approximations to the solution until $\left\\|x^{(k)}-\boldsymbol{x}^{(k-1)}\right\\|_{\infty} \leq$ 10^{-4}. Use the guess vector as $\boldsymbol{x}^{(0)}=(0,0,0)^{t}$.	10	CO2		
	$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$				
Q10	(a) Using 4-step Adam's Bashforth method, solve the following timedependent ODE: $\frac{d y}{d t}=1+\frac{y}{t}, \quad 1 \leq t \leq 2, \quad y(1)=2$ Take $h=0.2$. The actual solution is $y(t)=t \ln t+2 t \quad(\mathbf{1 0}$ Marks) (b) Discretize the Poisson Equation given below using finite difference method:		CO4		

	$\begin{gathered} \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=4 \quad 0<x<1, \quad 0<y<1 \\ u(x, 0)=x^{2}, \quad u(x, 1)=(x-2)^{2}, \\ u(0, y)=y^{2}, \quad u(1, y)=(y-1)^{2}, \quad 0 \leq y \leq 1 \end{gathered}$ Use $h=k=\frac{1}{4}$. Write the discretized equations in terms of $A \boldsymbol{u}=\boldsymbol{b}$, where A is the coefficient matrix, \boldsymbol{u} is the unknown and \boldsymbol{b} is known vector. Discuss the solution strategy. (10 Marks) OR (a) Using 3-step Adam's Moulton method to solve the following ODE: $\frac{d y}{d t}=\cos 2 t+\sin 3 t, \quad 0 \leq t \leq 1, \quad y(0)=1$ Take $h=0.2$. The actual solution is $y(t)=\frac{1}{2} \sin 2 t-\frac{1}{3} \cos 3 t+\frac{4}{3}$ (10 Marks) (b) Discretize the Laplace equation given below using Finite difference method: $\begin{gathered} \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad 1<x<2, \quad 0<y<1 \\ u(x, 0)=2 \ln x, \quad u(x, 1)=\ln \left(x^{2}+1\right), \quad 1 \leq x \leq 2 \\ u(1, y)=\ln \left(y^{2}+1\right), \quad u(2, y)=\ln \left(y^{2}+4\right), \quad 0 \leq y \leq 1 \end{gathered}$ Use $h=k=\frac{1}{3}$. Write the discretized equations in terms of $A \boldsymbol{u}=\boldsymbol{b}$, where A is the coefficient matrix, \boldsymbol{u} is the unknown and \boldsymbol{b} is known vector. Discuss the solution strategy. (10 Marks)		
Q11	The temperature $u(x, t)$ of a long, thin rod of constant cross section and homogeneous conducting material is governed by 1-D heat equation. If heat is generated in the material, for example, by resistance to current or nuclear reaction, the heat equation becomes: $\frac{\partial^{2} u}{\partial x^{2}}+\frac{K r}{\rho C}=K \frac{\partial u}{\partial t}, \quad 0<x<l, \quad 0<t$ where l is the length, ρ is the density, C is the specific heat, and K is the thermal diffusivity of the rod. The function $r=r(x, t, u)$ represents the heat generated per unit volume. Suppose that $l=1.5 \mathrm{~cm}, K=1.04 \mathrm{cal} / \mathrm{cm}-\mathrm{deg}-\mathrm{sec}, \rho=10.6 \mathrm{~g} / \mathrm{cm}^{3}, C=0.056 \mathrm{cal} / \mathrm{g}-$ deg and $r(x, t, u)=5.0 \mathrm{cal} / \mathrm{cm}^{3}-\mathrm{s}$ If the ends of the rod are kept at $0^{\circ} \mathrm{C}$, then $u(0, t)=u(l, t)=0, \quad t>0$	20	$\mathrm{CO4}$

| | Suppose the initial temperature distribution is given by
 $u(x, 0)=\sin \frac{\pi x}{l}, \quad 0 \leq x \leq l$

 Using the above information, approximate the temperature distribution
 with $h=0.15$ and $k=0.0225$ | |
| :--- | :--- | :--- | :--- |

