Name:

Enrolment No:

UPES End Semester Examination, December 2023

Course: Numerical Methods in Scientific Computing Program: BSc (Physics) by Research Course Code: PHYS 4024P Semester: VII Time : 03 hrs. Max. Marks: 100

Instructions:

	SECTION A (5Qx4M=20Marks)		
S. No.		Marks	СО
Q1	Discuss the importance of interpolation in Scientific Computing. What is the error in polynomial interpolation schemes?	4	CO1
Q2	Using finite differencing, write the expressions for following derivatives: a) $\frac{\partial^2 f}{\partial x^2}$ b) $\frac{\partial^2 f}{\partial x \partial y}$	4	CO1
Q3	What is a positive definite matrix? Check if the given matrix is positive definite or not? $A = \begin{bmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix}$	4	CO1
Q4	Differentiate between composite integration and Gauss quadrature.		CO1
Q5	Find the spectral radius of the following matrix: $ \begin{bmatrix} 3 & 2 & -1 \\ 1 & -2 & 3 \\ 2 & 0 & 4 \end{bmatrix} $		CO1
	SECTION B		
Q6	(4Qx10M= 40 Marks)Using Hermite interpolation, approximate a function passing through the following data: x $f(x)$ $f'(x)$		
	$\begin{array}{c ccccc} 0.1 & -0.29004996 & -2.8019975 \\ 0.2 & -0.56079734 & -2.6159201 \\ 0.3 & -0.81401972 & -2.9734038 \end{array}$	10	CO3
	If $P(x)$ is the approximate polynomial, find $P(0.13)$.		
	OR		

Construct a Natural cubic spline for the following data: $\begin{array}{c c} x & f(x) \\ \hline 0.1 & -0.29004996 \\ \hline 0.2 & -0.56079734 \\ \hline 0.3 & -0.81401972 \end{array}$ If $Q(x)$ is the approximate function passing through the above data, find $Q(0.25)$ A particle of mass m moving through a fluid is subjected to a viscous resistance R , which is a function of the velocity v . The relationship between the resistance R , velocity v , and time t is given by the equation $t = \int_{v(t_0)}^{v(t)} \frac{m}{R(u)} du$ Suppose that $R(u) = -v\sqrt{v}$ for a particular fluid, where R is in	10	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	
$\begin{array}{c c} 0.2 & -0.56079734 \\ 0.3 & -0.81401972 \end{array}$ If $Q(x)$ is the approximate function passing through the above data, find $Q(0.25)$ A particle of mass m moving through a fluid is subjected to a viscous resistance R , which is a function of the velocity v . The relationship between the resistance R , velocity v , and time t is given by the equation $t = \int_{v(t_0)}^{v(t)} \frac{m}{R(u)} du$	10	
If $Q(x)$ is the approximate function passing through the above data, find $Q(0.25)$ A particle of mass m moving through a fluid is subjected to a viscous resistance R , which is a function of the velocity v . The relationship between the resistance R , velocity v , and time t is given by the equation $t = \int_{v(t_0)}^{v(t)} \frac{m}{R(u)} du$	10	604
find $Q(0.25)$ A particle of mass m moving through a fluid is subjected to a viscous resistance R , which is a function of the velocity v . The relationship between the resistance R , velocity v , and time t is given by the equation $t = \int_{v(t_0)}^{v(t)} \frac{m}{R(u)} du$	10	
A particle of mass <i>m</i> moving through a fluid is subjected to a viscous resistance <i>R</i> , which is a function of the velocity <i>v</i> . The relationship between the resistance <i>R</i> , velocity <i>v</i> , and time <i>t</i> is given by the equation $t = \int_{v(t_0)}^{v(t)} \frac{m}{R(u)} du$	10	C04
Suppose that $R(u) = -v\sqrt{v}$ for a particular fluid, where R is in		CO4
newtons and v is in m/s. If $m = 10$ kg and $v(t_0) = 10$ m/s, approximate the time required for the particle to slow to $v = 5$ m/s.		
Water flows from an inverted tank with circular orifice at the rate $\frac{dx}{dt} = -0.6 \pi r^2 \sqrt{2g} \frac{\sqrt{x}}{A(x)}$ where <i>r</i> is the radius of the orifice, <i>x</i> is the height of the liquid from the vertex of the cone, and <i>A</i> (<i>x</i>) is the area of the cross-section of the tank with <i>x</i> units above the orifice. Suppose <i>r</i> = 0.1 ft, <i>g</i> = 32.1 ft/s ² , and the tank has an initial water level of 8 ft and initial volume 512($\pi/3$) ft ³ . Use RK2 method to find the water level after 10 minutes with <i>h</i> = 20 sec.	10	CO4
equations: $6x_1 - 2\cos(x_2x_3) - 1 = 0$ $9x_2 + \sqrt{x_1^2 + \sin x_3 + 1.06 + 0.9} = 0$ $60x_3 + 3e^{-x_1x_2} + 10\pi - 3 = 0$ Find out approximations to the solution until $\ \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\ _{\infty} \le 10^{-4}$. Use the guess vector as $\mathbf{x}^{(0)} = (0,0,0)^t$.	10	CO2
SECTION-C		
(2Qx20M=40 Marks)		
(a) Using 4-step Adam's Bashforth method, solve the following time- dependent ODE: $\frac{dy}{dt} = 1 + \frac{y}{t}, 1 \le t \le 2, y(1) = 2$ Take $h = 0.2$. The actual solution is $y(t) = t \ln t + 2t$ (10 Marks) (b) Discretize the Poisson Equation given below using finite difference		CO4
	newtons and v is in m/s. If $m = 10$ kg and $v(t_0) = 10$ m/s, approximate the time required for the particle to slow to $v = 5$ m/s. Water flows from an inverted tank with circular orifice at the rate $\frac{dx}{dt} = -0.6 \pi r^2 \sqrt{2g} \frac{\sqrt{x}}{A(x)}$ where r is the radius of the orifice, x is the height of the liquid from the vertex of the cone, and $A(x)$ is the area of the cross-section of the tank with x units above the orifice. Suppose $r = 0.1$ ft, $g = 32.1$ ft/s ² , and the tank has an initial water level of 8 ft and initial volume $512(\pi/3)$ ft ³ . Use RK2 method to find the water level after 10 minutes with $h = 20$ sec. Use Newton method to solve the following system of non-linear equations: $6x_1 - 2\cos(x_2x_3) - 1 = 0$ $9x_2 + \sqrt{x_1^2 + \sin x_3 + 1.06 + 0.9} = 0$ $60x_3 + 3e^{-x_1x_2} + 10\pi - 3 = 0$ Find out approximations to the solution until $\ \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\ _{\infty} \le 10^{-4}$. Use the guess vector as $\mathbf{x}^{(0)} = (0,0,0)^t$. SECTION-C (2Qx20M=40 Marks) (a) Using 4-step Adam's Bashforth method, solve the following time- dependent ODE: $\frac{dy}{dt} = 1 + \frac{y}{t}, 1 \le t \le 2, y(1) = 2$ Take $h = 0.2$. The actual solution is $y(t) = t \ln t + 2t$ (10 Marks)	newtons and v is in m/s. If $m = 10$ kg and $v(t_0) = 10$ m/s, approximate the time required for the particle to slow to $v = 5$ m/s.Water flows from an inverted tank with circular orifice at the rate $\frac{dx}{dt} = -0.6 \pi r^2 \sqrt{2g} \frac{\sqrt{x}}{A(x)}$ where r is the radius of the orifice, x is the height of the liquid from the vertex of the cone, and $A(x)$ is the area of the cross-section of the tank with x units above the orifice. Suppose $r = 0.1$ ft, $g = 32.1$ ft/s ² , and the tank has an initial water level of 8 ft and initial volume $512(\pi/3)$ ft ³ . Use RK2 method to find the water level after 10 minutes with $h = 20$ sec.Use Newton method to solve the following system of non-linear equations: $6x_1 - 2\cos(x_2x_3) - 1 = 0$ $9x_2 + \sqrt{x_1^2 + \sin x_3 + 1.06 + 0.9 = 0}$ $60x_3 + 3e^{-x_1x_2} + 10\pi - 3 = 0$ Find out approximations to the solution until $\ \mathbf{x}^{(k)} - \mathbf{x}^{(k-1)}\ _{\infty} \le 10^{-4}$. Use the guess vector as $\mathbf{x}^{(0)} = (0,0,0)^t$.SECTION-C $(2Qx20M=40$ Marks)(a) Using 4-step Adam's Bashforth method, solve the following time- dependent ODE: $\frac{dy}{dt} = 1 + \frac{y}{t}, 1 \le t \le 2, y(1) = 2$ Take $h = 0.2$. The actual solution is $y(t) = t \ln t + 2t$ (10 Marks)(b) Discretize the Poisson Equation given below using finite difference

	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 4 \qquad 0 < x < 1, 0 < y < 1$ $u(x, 0) = x^2, u(x, 1) = (x - 2)^2, 0 \le x \le 1$ $u(0, y) = y^2, u(1, y) = (y - 1)^2, 0 \le y \le 1$		
	Use $h = k = \frac{1}{4}$.		
	Write the discretized equations in terms of $Au = b$, where A is the coefficient matrix, u is the unknown and b is known vector. Discuss the solution strategy. (10 Marks)		
	OR		
	(a) Using 3-step Adam's Moulton method to solve the following ODE: $\frac{dy}{dt} = \cos 2t + \sin 3t, 0 \le t \le 1, y(0) = 1$		
	$\frac{dt}{dt} = \cos 2t + \sin 3t, 0 \le t \le 1, y(0) = 1$ Take $h = 0.2$. The actual solution is $y(t) = \frac{1}{2}\sin 2t - \frac{1}{3}\cos 3t + \frac{4}{3}$ (10 Marks)		
	(b) Discretize the Laplace equation given below using Finite difference method: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \qquad 1 < x < 2, 0 < y < 1$		
	$u(x,0) = 2 \ln x, u(x,1) = \ln(x^2 + 1), 1 \le x \le 2$ $u(1,y) = \ln(y^2 + 1), u(2,y) = \ln(y^2 + 4), 0 \le y \le 1$ Use $h = k = \frac{1}{3}$.		
	Write the discretized equations in terms of $Au = b$, where A is the coefficient matrix, u is the unknown and b is known vector. Discuss the solution strategy. (10 Marks)		
Q11	The temperature $u(x, t)$ of a long, thin rod of constant cross section and homogeneous conducting material is governed by 1-D heat equation. If heat is generated in the material, for example, by resistance to current or nuclear reaction, the heat equation becomes: $\frac{\partial^2 u}{\partial x^2} + \frac{Kr}{\rho C} = K \frac{\partial u}{\partial t}, 0 < x < l, \ 0 < t$ where <i>l</i> is the length, ρ is the density, <i>C</i> is the specific heat, and <i>K</i> is the thermal diffusivity of the rod. The function $r = r(x, t, u)$ represents the	20	CO4
	heat generated per unit volume. Suppose that $l = 1.5 \text{ cm}, K = 1.04 \text{ cal/cm-deg-sec}, \rho = 10.6 \text{ g/cm}^3, C = 0.056 \text{ cal/g-deg}$ and $r(x, t, u) = 5.0 \text{ cal/cm}^3$ -s If the ends of the rod are kept at 0°C, then		
	u(0,t) = u(l,t) = 0, t > 0		

Suppose the initial temperature	
u(x,0) = s	$ in\frac{\pi x}{l}, 0 \le x \le l $
Using the above information, a	pproximate the temperature distribution
with $h = 0.15$ and $k = 0.0225$	