

Q.9.	A particle of mass ' m ' and coordinate ' q ' has the Lagrangian $L=\frac{1}{2} m \dot{q}^{2}-\frac{\lambda}{2} q \dot{q}^{2}$. Calculate the Hamiltonian of the system. OR Lagrangian of a system is given by $L=\frac{1}{2} m \dot{q}_{1}^{2}+2 m \dot{q}_{2}^{2}-5 k\left(\frac{5}{4} q_{1}^{2}+2 q_{2}^{2}-2 q_{1} q_{2}\right)$ Where ' m ' and ' k ' are positive constants. Determine the frequencies of its normal modes.	10	$\mathrm{CO3}$
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q. 10	Discuss the scattering in central force filed through Lagrangian formulation and thus obtain expression for total scattering cross-section of alpha particle scattering through nucleus.	20	$\mathrm{CO2}$
Q. 11	Apply the theory of small oscillations to obtain the secular equation for a double pendulum as shown below and hence determine its normalized frequencies. OR Discuss the general theory of small oscillations and thus interpret the secular equation and the eigen value equation, hence deduce the method to obtain the resonating frequencies.	20	$\mathrm{CO3}$

