Name:

Enrolment No:

Semester: V

UPES

End Semester Examination, December 2023

Course: Fundamental of Material Science

Program: Int. B.Sc.-M.Sc Physics Time : 03 hrs.
Course Code: PHYS 3038 Max. Marks: 100

Instructions: 1. All questions are compulsory.

SECTION A (50x4M=20Marks)

	(5Qx4M=20Marks)		
S. No.		Marks	CO
Q 1	How does the coercivity of a magnetic material relate to its hysteresis loop?	4	CO2
Q 2	Draw the Fermi energy level diagram for P and N type Semiconductor.	4	CO3
Q 3	"The probability of the formation of self-interstitial defect is very small". Explain.	4	CO2
Q 4	What is dielectric breakdown, and how does it limit the maximum voltage a dielectric can withstand?	4	CO2
Q 5	"Metals are opaque to all electromagnetic radiation on the low end of the frequency spectrum". Explain.	4	СОЗ
	SECTION B (4Qx10M= 40 Marks)		
Q 6	Calculate the current produced in a silicon crystal with a cross-sectional area of 3 cm² and a length of 0.6 mm when a potential difference of 2.0 V is applied. Given that the concentration of free electrons in the silicon crystal is 1.5 x 10 ¹⁹ m ⁻³ , and the electron mobility is 0.25 m²·V ⁻¹ ·s ⁻¹ .	10	CO4
Q 7	What happens to light when it strikes a transparent material and undergoes refraction? How does this relate to the material's optical properties?	10	CO3
Q 8	Calculate the number of atoms per unit cell of a metal having a lattice parameter 0.29 nm and density of 7870 kg/m ³ . Atomic weight of the metal is 55.85.	10	CO2
Q 9	What is a phase diagram, and what is its primary purpose in materials science and thermodynamics? OR	10	CO2

