Name:

Enrolment No:

UPES End Semester Examination, December 2023

Course: Classical Mechanics Program: Integrated MSc + BSc Physics Course Code: PHYS3030 Semester : V Time : 03 hrs. Max. Marks: 100

Instructions:

SECTION A (5Qx4M=20Marks)				
S. No.		Marks	СО	
Q 1	Define the D'Alembert's principle for a dynamical system.	04	CO1	
Q.2	Describe in short about. a) Degree of freedom b) Generalized coordinates	04	CO1	
Q.3	Interpret the figure below to obtain the Lagrangian of the system. y M r x θ r m The support M moves without friction on the horizontal plane. The parameter 'x' is variable.	04	CO3	
Q.4	Determine the percentage contraction in the length of a meter rod moving along its length (along x) with a velocity, $\frac{c}{2}$.	04	CO2	
Q.5	A particle of mass 'm' is moving in a potential $V(x) = -\frac{1}{2}ax^2 + \frac{1}{4}bx^4$ where a, b are positive constants. Determine the frequency of small oscillations about a point of stable equilibrium.	04	CO1	
	SECTION B (4Qx10M= 40 Marks)			
Q 6.	Obtain Hamilton's equations of motion from variational principle.	10	CO3	

Q.7.	Determine the values of α and β for which the transformation equations as given below represent canonical transformations. $Q = q^{\alpha} Cos\beta p$ $P = q^{\alpha} Sin\beta p$	10	CO4
Q.8.	Describe the Relativistic expression of Hamiltonian for a particle moving under conservative forces.	10	CO1
Q.9.	Consider a circular orbit in a central force potential of form $V(r) = -\frac{k}{r^n}$, where k > 0, and 0 < n < 2. If the time period of a circular orbit of radius R is T ₁ and that of radius 2R is T ₂ , determine the ratio $\frac{T_2}{T_1}$.	10	CO2
	Show that isotropy of space leads to conservation of angular momentum.		
	SECTION-C (2Qx20M=40 Marks)		<u> </u>
Q.10	Illustrate the Lagrangian formalism to determine Kepler's laws of motion of planetary bodies.	20	CO2
Q.11	Apply the theory of small oscillations to obtain the secular equation for two coupled oscillators as shown below and hence determine its normalized frequencies.	20	CO3