Name: Enrolment No:			
$\begin{gathered} \text { SECTION A } \\ (5 \mathrm{Qx} 4 \mathrm{M}=20 \mathrm{Marks}) \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q 1	Solve the following simultaneous differential equations: $\begin{aligned} & \frac{d x}{d t}+\frac{d y}{d t}-2 y=2 \cos t-7 \sin t \\ & \frac{d x}{d t}-\frac{d y}{d t}+2 x=4 \cos t-3 \sin t \end{aligned}$	4	CO1
Q 2	Show that e^{x} and e^{-x} are linearly independent solutions of $\frac{d^{2} y}{d x^{2}}-y=0$ on any interval.	4	$\mathrm{CO2}$
Q 3	Express $2 x^{3}+2 x^{2}-x-3$ in terms of Legendre's polynomials.	4	$\mathrm{CO3}$
Q 4	Obtain the solution of following boundary value problem $x^{2} y^{\prime \prime}(x)+$ $x y^{\prime}(x)-4 y(x)=0$, along with the boundary conditions $\|y(0)\|<$ $\infty, y^{\prime}(1)=6$.	4	$\mathrm{CO4}$
Q 5	Find the Fourier cosine transform of $f(x)=e^{-3 x}+2 e^{-5 x}$	4	$\mathrm{CO5}$
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	Evaluate the general solution of $(x-1) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=0$ Given that $y(x)=x$ as one solution.	10	$\mathrm{CO2}$
Q 7	Solve in series the differential equation $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0$, about the point $x=0$.	10	$\mathrm{CO3}$

Q 8	Evaluate all the eigen values and corresponding eigen vectors for the problem $y^{\prime \prime}(x)+\beta y(x)=0$ with $y^{\prime}(0)=y^{\prime}(L)=0$.	10	CO 4
Q 9	Find the Laplace transform of $\frac{1-\sin t}{t^{2}}$ If $f(t)=t^{2} e^{-2 t} \cos 5 t$, calculate Laplace transform of $f(t)$.	10	$\mathrm{CO5}$
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \\ \hline \end{gathered}$			
Q 10	If $J_{n}(x)$ is the Bessel function of first kind of order n then prove that a) $\frac{d}{d x}\left[x J_{n}(x) J_{n+1}(x)\right]=x\left[J_{n}^{2}(x)-J_{n+1}^{2}(x)\right]$. b) $J_{4}(x)=\left(\frac{48}{x^{3}}-\frac{8}{x}\right) J_{1}(x)+\left(1-\frac{24}{x^{2}}\right) J_{0}(x)$.	20	CO 3
Q 11A	Applying Laplace transform solve the following initial value problem $y^{\prime \prime}(t)+25 y(t)=10 \cos 5 t, y(0)=2, y^{\prime}(0)=0$ OR Obtain the inverse Laplace transform of $\frac{s^{2}}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}$	10	$\mathrm{CO5}$
Q 11B	Find Fourier cosine transform of $f(x)=\left\{\begin{array}{lr} x, & 0<x<\frac{1}{2} \\ 1-x, & \frac{1}{2}<x<1 \\ 0 & x>1 \end{array}\right.$ OR Evaluate the Fourier transform of the function $f(x)= \begin{cases}1-\|x\| & \text { if }\|x\|<1 \\ 0 & \text { for }\|x\|>1\end{cases}$	10	$\mathrm{CO5}$

