Name:

Enrolment No:

Semester: V

Time: 03 hrs.

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2023

Course: Integral Equations & Calculus of Variations

Program: Integrated B.Sc.-M.Sc. Mathematics

Course Code: MATH 3046 Max. Marks: 100

Instructions: All questions are compulsory.

SECTION A					
(5Qx4M=20Marks)					
S. No.		Marks	CO		
Q1	Suppose $f:[0,1) \to [1,\infty)$ is such that $f(x) = 1 + \int_0^x (f(t))^2 dt$. Determine	4	CO1		
	f(x).				
Q2	Determine the cardinality of set <i>S</i> consisting of all the solutions of the integral				
	equation:				
	\int_{-1}^{1}	4	CO1		
	$y(x) = e^x + \int_0^1 2xy(t)dt$				
Q3	The integral equation:				
	$\phi(x) = \lambda \int_0^1 e^{x+t} \cdot \phi(t) dt$	4	CO2		
	has a non-trivial solution for some λ . Find such value(s) of λ .				
Q4	Find the resolvent kernel for the Volterra integral equation:	4			
	$y(x) = x + \lambda \int_{a}^{x} y(t) dt$		CO2		
Q5	Find the set $S = \left\{ y\left(\left(2n + \frac{1}{2}\right)\pi\right) \mid y(x) \text{ is extremal} \right\}$ where the variational	4	CO3		
	problem is $I[y(x)] = \int_0^{2\pi} (y^2 - y'^2) dx$; $y(0) = 1, y(2\pi) = 1$.				
	SECTION B				
	(4Qx10M= 40 Marks)	T			
Q 6	Use Laplace transform to determine $y(1)$ from the convolution type integral	10	CO1		
	equation:				

	c^{χ}		
	$y(x) = 1 - 2x - 4x^2 + \int_0^x [3 + 6(x - t) - 4(x - t)^2] y(t) dt$		
Q7	Use successive approximation to solve the Fredholm equation:		
	$u(x) = 1 + \int_0^1 x \cdot u(t) dt$	10	CO2
	with $u_0(x) = 1$ as initial approximation.		
Q8	Determine the smooth function $y(x)$ satisfying $y(0) = y(1) = 1$ that		
	minimizes J where $J[y(x)] = \int_0^1 \left(y'^2 + \frac{4y^2}{x^2}\right) x dx$.	10	CO3
Q9	If $y_e(x)$ is the extremal of the functional:		
	$J[y(x)] = \int_0^1 (y'^2(x) + 2y(x)) dx$	10	CO3
	subject to $y(0) = 0, y(1) = 1$. Find $\inf J[y_e(x)]$.		
O10	(2Qx20M=40 Marks) State the Isoperimetric problem. Use calculus of variations to find the shortest		
	SECTION-C (2Ox20M=40 Marks)		
Q10	State the Isoperimetric problem. Use calculus of variations to find the shortest		
	curve in the first quadrant joining points $P(0,0)$ and $Q(1,0)$ that has area equal	20	CO4
	to 1 square units beneath it.		
Q11	(a) Show that the integral equation:		
	$y(x) = f(x) + \lambda \int_0^1 \cos(x+t) y(t) dt$		
	possesses no solution if $f(x) = x$ but infinitely many solutions if $f(x) = 1$.		
	OR		
	Determine the eigenvalues and eigenfunctions of the integral equation:	20	CO2
	$y(x) = \lambda \int_0^1 \max[(1-x)t, (1-t)x] y(t) dt$		
	where $0 < x < 1, 0 < t < 1$.		
		l .	