Name: Enrolment No:			
Course: Integral Equations \& Calculus of Variations Semester: V Program: Integrated B.Sc.-M.Sc. Mathematics Time: $\mathbf{0 3}$ hrs. Course Code: MATH 3046 Max. Marks: 100 Instructions: All questions are compulsory.			
$\begin{gathered} \text { SECTION A } \\ (5 Q \times 4 \mathrm{M}=20 \mathrm{Marks}) \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q1	Suppose $f:[0,1) \rightarrow[1, \infty)$ is such that $f(x)=1+\int_{0}^{x}(f(t))^{2} d t$. Determine $f(x)$.	4	CO1
Q2	Determine the cardinality of set S consisting of all the solutions of the integral equation: $y(x)=e^{x}+\int_{0}^{1} 2 x y(t) d t$	4	CO1
Q3	The integral equation: $\phi(x)=\lambda \int_{0}^{1} e^{x+t} \cdot \phi(t) d t$ has a non-trivial solution for some λ. Find such value(s) of λ.	4	CO 2
Q4	Find the resolvent kernel for the Volterra integral equation: $y(x)=x+\lambda \int_{a}^{x} y(t) d t$	4	CO 2
Q5	Find the set $S=\left\{\left.y\left(\left(2 n+\frac{1}{2}\right) \pi\right) \right\rvert\, y(x)\right.$ is extremal $\}$ where the variational problem is $I[y(x)]=\int_{0}^{2 \pi}\left(y^{2}-y^{\prime 2}\right) d x ; y(0)=1, y(2 \pi)=1$.	4	CO 3
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Q} \times 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q 6	Use Laplace transform to determine $y(1)$ from the convolution type integral equation:	10	CO1

	$y(x)=1-2 x-4 x^{2}+\int_{0}^{x}\left[3+6(x-t)-4(x-t)^{2}\right] y(t) d t$		
Q7	Use successive approximation to solve the Fredholm equation: $u(x)=1+\int_{0}^{1} x \cdot u(t) d t$ with $u_{0}(x)=1$ as initial approximation.	10	CO2
Q8	Determine the smooth function $y(x)$ satisfying $y(0)=y(1)=1$ that minimizes J where $J[y(x)]=\int_{0}^{1}\left(y^{\prime 2}+\frac{4 y^{2}}{x^{2}}\right) x d x$.	10	$\mathrm{CO3}$
Q9	If $y_{e}(x)$ is the extremal of the functional: $\begin{aligned} & \qquad[y(x)]=\int_{0}^{1}\left(y^{\prime 2}(x)+2 y(x)\right) d x \\ & \text { subject to } y(0)=0, y(1)=1 \text {. Find inf } J\left[y_{e}(x)\right] \end{aligned}$	10	$\mathrm{CO3}$
	$\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 \mathrm{M}=40 \text { Marks }) \\ \hline \end{gathered}$		
Q10	State the Isoperimetric problem. Use calculus of variations to find the shortest curve in the first quadrant joining points $P(0,0)$ and $Q(1,0)$ that has area equal to 1 square units beneath it.	20	CO 4
Q11	(a)Show that the integral equation: $y(x)=f(x)+\lambda \int_{0}^{1} \cos (x+t) y(t) d t$ possesses no solution if $f(x)=x$ but infinitely many solutions if $f(x)=1$. OR Determine the eigenvalues and eigenfunctions of the integral equation: $y(x)=\lambda \int_{0}^{1} \max [(1-x) t,(1-t) x] y(t) d t$ where $0<x<1,0<t<1$.	20	CO 2

