Name:

S. No.

Enrolment No:

UPES

End Semester Examination, December 2023

Course: B.Sc. (H) Mathematics/ Int. B. Sc. M. Sc. Mathematics

Program: FINITE ELEMENT METHODS

Course Code: MATH 3041

Semester: V Time: 03 hrs. Max. Marks: 100

Marks

CO

Instructions: Attempt all questions.

SECTION A (5Qx4M=20Marks)

		Mains	CO
Q 1	The population of a certain city is given below for various years at equal intervals except for one year which is to be estimated. Year: 1951 1961 1971 1981 1991 Population: 45 43 52 55. (in thousands)	4	CO3
Q 2	Use Picard method to solve the equation $y' = x - y$ subject to the condition $y = 1$ when $x = 0$.	4	CO2
Q 3	Evaluate the interval $I = \int_0^1 \sqrt{1 - x^2} dx$ taking $h = 0.25$ by trapezoidal rule.	4	CO4
Q 4	Determine whether the given equation is elliptic or hyperbolic: $(x+1)u_{xx} - 2(x+2)u_{xy} + (x+3)u_{yy} = 0.$	4	CO5
Q 5	Define shape function in finite element method.	4	CO3
	SECTION B		
	(4Qx10M= 40 Marks)		1
Q 6	Find an approximate solution by method of least squares, of the differential equation $\frac{d^2u}{dx^2} - u = x$, $0 \le x \le 1$, with boundary condition $u(0) = u(1) = 0$. Use only two basis functions.	10	CO3
Q 7	The following are the measurements t made on a curve recorded by the oscillograph representing a change of current i due to a change in the conditions of an electric current. $t: 1.2 2.0 2.5 3.0$ $i: 1.36 0.58 0.34 0.20$. Using Lagrange's formula, find i at $t = 1.6$.	10	CO1

Q 8	Find an approximate solution by Galerkin's method, of the Poisson equation: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -1 \text{ defined in domain } D \text{ where } D = \{x, y -1 \le x, y \le 1\} \text{ and homogenous Dirichlet boundary conditions are prescribed on the boundary, i.e. } u = 0 \text{ on } x = \pm 1 \text{ and } y = \pm 1. \text{ Use only one basis function.}$ A rocket is launched from the ground. Its acceleration is registered during the first 80	10	CO2
Q9	A rocket is launched from the ground. Its acceleration is registered during the first 80 seconds and is given in the table below. Using Simpson's 1/3 rd rule, find the velocity of the rocket at $t = 80$ seconds. $t (sec) : 0 10 20 30 40 50 60 70 80$ $f (\frac{cm}{sec^2}) : 30 31.63 33.34 35.47 37.75 40.33 43.25 46.69 50.67.$ OR The speed, v meters per second, of a car, t seconds after it starts, is shown in the following table: $t : 0 12 24 36 48 60 72 84 96 108 120$ $v : 0 3.60 10.08 18.90 21.60 18.54 10.26 5.40 4.50 5.40 9.00$ using Simpson's $1/3^{\rm rd}$ rule, find the distance travelled by the car in 2 minutes.	10	CO4
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary values as shown in figure given below: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	CO4

CO5