Name:

Enrolment No:

UPES

End Semester Examination, December 2023

Course: Physical Chemistry V Semester: V

Program: B.Sc. (H) Chemistry

Course Code: CHEM 3015

Time : 03 hrs.

Max. Marks: 100

Instructions: Read the instructions given below carefully:

1. All questions are compulsory.

2. Internal choice is given in Q 9 and 11.

SECTION A
(50x4M=20Marks)

S. No.		Marks	CO
Q 1	Calculate the speed of an electron if its de Broglie wavelength is 0.1 nm. $(m_e=9.1 \times 10^{-31} \text{ Kg}; h=6.6 \times 10^{-34} \text{ Js})$	4	CO1
Q 2	What is the selection rule for a vibrational and pure rotational spectrum?	4	CO3
Q 3	In proton NMR spectra determination, how many kinds of proton are there in the following compounds: a) CH ₃ CH ₂ CH ₃ b) (CH ₃) ₂ CHCH ₂ CH ₃	4	CO2
Q 4	Evaluate the commutator $[\varkappa, d/d\varkappa]$ operating on an arbitrary function $f(\varkappa)$.	4	CO1
Q 5	Write down the values of Laplacian and Hamiltonian operators?	4	CO1
	SECTION B		
	(4Qx10M= 40 Marks)		
Q 6	Calculate the expectation value of distance $\langle x^2 \rangle$ for a particle in a one-dimensional box in between 0 to a; given that the normalized wave function is $\Psi = \frac{\sqrt{2}}{a} \sin \frac{n\pi \varkappa}{a}$	10	CO2
Q 7	What are the main points of similarities and differences between VBT and MOT?	10	CO2
Q 8	Derive the Schrodinger wave equation for a particle moving in a 3-dimensional box.	10	CO1
Q 9	What is Infrared spectroscopy. Discuss the various modes of vibrations and regions found in IR spectra with total energy expression of the molecule.	10	CO3

	OR With the help of a schematic diagram, explain briefly the Shielding and Deshielding of Protons in NMR studies.		
	SECTION-C (2Qx20M=40 Marks)		
Q 10	 (a) Calculate wavelength of an electron having kinetic energy equal to 4.55 x 10⁻²⁵J. (m_e= 9.1 x 10⁻³¹ Kg; h=6.6 x 10⁻³⁴ Js) (b) According to Born Oppenheimer approximation, what is the value of electronic Hamiltonian for a diatomic molecule like H₂? Discuss in detail. 	10 10	CO2
Q 11	 a) Discuss Franck-Condon principle in vibrational spectrum. With the help of a suitable diagram, discuss all possible electronic transitions with localized molecular orbitals in a carbonyl group. OR Calculate the vibrational frequency of CO in cm⁻¹ if its force constant is 1840 Nm⁻¹. The atomic masses are ¹²C = 19.9 x 10⁻²⁷ kg and ¹⁶O = 26.6 x 10⁻²⁷ kg. b) A sample was excited by the 435.8 nm line of mercury. A Raman line was observed at 4447 A⁰. Calculate the Raman shift in cm⁻¹. At what wavelength in A⁰ would the anti-stokes line appear in the Raman spectrum of the sample. OR The pure rotational spectrum of gaseous HCl contains a series of equally spaced lines separated by 20.80 cm⁻¹. Calculate the internuclear distance of the molecule. The atomic masses of H and Cl are 1.673 x 10⁻²⁷ kg and 58.06 x 10⁻²⁷ kg respectively. 	10 10	CO3