

| Q 5 | In a composite slab, the temperature at the interface between two materials is equal
 to the average temperature at the two ends. Assuming steady one-dimensional heat
 conduction, find relation between thermal conductivity of two materials. | | |
| :--- | :--- | :--- | :--- | :--- |
| $T_{\text {merefaee }}$ | | | |

	$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$		
Q 10	You have been asked to develop a model that can determine the relationship between the temperature of a bullet at impact and the distance that it traveled after it was fired. Such a model may be useful for forensic science by allowing investigators to ascertain details of the crime from the characteristics of the entrance wound. The bullet can be modelled as a sphere with diameter $\mathrm{D}=0.635$ cm . Develop the model assuming that the velocity of the bullet as it leaves a gun is uinit $=350 \mathrm{~m} / \mathrm{sec}$ and the initial temperature of the bullet is Tinit $=267^{\circ} \mathrm{C}$; these parameters can be adjusted depending on the model of the gun. The bullet travels through the still air at $\mathrm{T} \infty=21^{\circ} \mathrm{C}$. The bullet can be modelled as a lumped capacitance and the bullet material has density $\rho=8303 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{c}=4.1868$ $\mathrm{kJ} / \mathrm{kg}-\mathrm{K}$. Neglect the effects of radiation and gravity in this analysis. Develop a model that can relate temperature to distance traveled. OR A turbine blade made of a metal alloy ($k=17 \mathrm{~W} / \mathrm{m} . \mathrm{K}$) has a length of 5.3 cm , a perimeter of 11 cm , and a cross-sectional area of $5.13 \mathrm{~cm}^{2}$. The turbine blade is exposed to hot gas from the combustion chamber at $973^{\circ} \mathrm{C}$ with a convection heat transfer coefficient of $538 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$. The base of the turbine blade maintains a constant temperature of $450^{\circ} \mathrm{C}$ and the tip is adiabatic. Determine the heat transfer rate to the turbine blade and temperature at the tip.	20	CO2

