Name:

Enrolment No:

UPES

End Semester Examination, December 2023

Course: Power Electronics Semester: V

Program: B.Tech (Electrical Engineering)

Course Code: ECEG3031

Time : 03 hrs.

Max. Marks: 100

Instructions: Assume the data if missing.

SECTION A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	Define holding current and latching current of SCR. Show these currents on the static v-i characteristics of SCR.	4	CO1
Q2	Draw and explain the circuit for obtaining the input & output characteristics of the following devices: A) Power Diode B) TRIAC	4	CO1
Q3	Describe a single-phase full converter feeding an RL load. Draw the waveform of input voltage, output voltage, load current and voltage across the thyristor.	4	CO2
Q4	Identify the circuit shown below and draw the input & output waveforms.	4	CO1

Q5	In a dc chopper, the average load current is 30 Amps, chopping frequency is 250 Hz. Supply voltage is 110 volts. Calculate the ON and OFF periods of the chopper if the load resistance is 2 ohms.	4	CO2
	SECTION B (4Qx10M= 40 Marks)		
Q6	Design a UJT triggering circuit for one thyristor and explain the operation with the help of circuit diagram and waveform.	10	CO2
Q7	It is required to operate 200 A SCR in parallel with 300 A SCR with their respective ON – State voltage drop of 2 V and 1.2 V. Calculate the value of resistance to be inserted in series with each SCR so that they share the total load of 500 A in proportional to their current ratings – (in m Ω).	10	CO4
Q8	For a type A chopper, the dc source voltage is 200 V, load resistance 5 Ω , drop across the switch is 1Vand duty cycle 0.5. Calculate average and RMS value of output voltage and chopper efficiency.	10	CO3
Q9	Illustrate different regions of single-phase dual converter without circulating current mode. Explain the working of same with the help of circuit diagram.	10	CO2
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Design a circuit that will deliver 100 W to a 48 V dc source from a 120 V rms 60 Hz ac source. Give alternative circuits that could be used to satisfy the design specifications and give reasons for your selection. OR Show that the controlled half-wave rectifier and full wave rectifier with a resistive load have the power factor of $pf_{HW} = \sqrt{\frac{1}{2} - \frac{\alpha}{2\pi} + \frac{\sin 2\alpha}{4\pi}} \text{ and } pf_{FW} = \sqrt{1 - \frac{\alpha}{\pi} + \frac{\sin 2\alpha}{2\pi}}$ Also, explain the significance of power factor in rectifier circuits.	20	CO3
Q11	A single-phase voltage controller is employed for controlling the power flow from 230V, 50Hz source into a load circuit consisting of R=6 Ω and L=8 Ω . Calculate (i) the range of firing angle (ii) the maximum value of rms load current (iii) the maximum power and power factor (iv) The maximum values of average and rms thyristor currents.	20	CO4