Name:

Enrolment No:

UPES

End Semester Examination, December 2023

Program Name: Electronics & Communication Engineering

Semester: V Course Name: VLSI Design Time: 3 hrs Course Code: ECEG-3049 Max. Marks: 100

Nos. of page(s): 2

Instructions: Assume any data in the design, if required

SECTION A (5Q x 4M=20Marks)

	beditorin (by a min-zonamis)		
S. No.		Marks	CO
Q.1	Explain the concept of channel length modulation in N-MOSFET.	5	CO1
Q.2	Discuss the concept of ratio less dynamic logic using pass transistor.	5	CO3
Q.3	How NMOS can be used as an inverter. Explain with circuit and characteristics.	5	CO3
Q.4	What is the need for low power CMOS circuit design. Justify the output of the following circuit.	5	CO4
	SECTION-B (4Q x 10M= 40 Marks)		
Q.5	Draw the stick diagram and layout diagram of the 2- input XOR and NAND gate using NMOS and CMOS.	10	CO4
Q.7	Design the circuit described using the function given below using CMOS. $Y_1 = \overline{A(B+C)(D+E)}$ $Y_2 = \overline{(A+B+C)(D+E)}$ Also find the equivalent CMOS inverter circuit for simultaneous switching of all inputs assuming that $(W/L)_p = 5$ for all PMOS transistors and $(W/L)_n = 2$ for all NMOS transistors. OR Implement all the following logic (AND, NAND, NOR, OR XOR) gates using NMOS and CMOS.	10	CO2

Q.9 Attemp Q.10	Detail the following with respect to MOSFET circuits. (a) Speed of operation (b) Noise Margin in CMOS (c) Power delay product (d) Propagation delay (e) $\mu = r_d \times g_m$. Write the detailed steps in CMOS fabrication using P-well process. SECTION-C (2Q x 20M = 40 Marks) of any two of the followings (a) Draw the voltage transfer curve for the CMOS inverter and derive the	10	CO3
	mathematical expression to estimate the value of V _{OH} , V _{OL} , V _{IH} and V _{IL} for NMOS inverter circuit and detail the functionality. (b) Sketch the PMOS and NMOS transistor large signal model.	15+5	CO3
Q.11	(a) Determine the mathematical expression for the drain current for the entirety of the N-MOSFET's functioning in each region. (b) Design the circuit shown in Fig. to operate the transistor in saturation region. $I_D=0.5 \text{ mA}, V_D=+3 \text{ V}, \text{ K'p.}(\text{W/L})=1 \text{ mA/V}^2, V_t=-1 \text{ V}$ $V_{DD}=+5 \text{ V}$ $V_{DD}=+5 \text{ V}$ $V_{DD}=+5 \text{ V}$ Assume the channel length modulation is zero. Calculate the value of R_D maximum to maintain the enhancement type P-MOSFET in saturation.	10+10	CO2
Q.12	Compare the all PLD technology and realize the following functions using all technology at gate level and N-MOSFT level. $F_1 = wxyz + \overline{w}xyz + \overline{w}xyz + wx\overline{y}\overline{z}$ $F_2 = wxyz + \overline{w}xyz + w\overline{x}yz + w\overline{x}y\overline{z}$ $F_3 = wxyz + +\overline{w}x\overline{y}z$ $F_4 = w\overline{x}y\overline{z} + \overline{w}xyz + \overline{w}xy\overline{z} + w\overline{x}yz$	20	CO4