Name: Enrolment No:			
Course: Hydraulic Engineering Semester: V Program: B Tech Civil Engineering Time: 03 hrs. Course Code: CIVL 3060 Max. Marks: 100 Instructions: Attempt all the questions;			
$\begin{gathered} \text { SECTION A } \\ (5 Q \times 4 \mathrm{M}=20 \mathrm{Marks}) \\ \hline \end{gathered}$			
S. No.		Marks	CO
Q1	The equation of the velocity distribution over a plate is given by: $\mathbf{u}=2 \mathbf{y}-\mathbf{y}^{2}$ where u is the velocity in m / s at a point y meter from the plate measured perpendicularly. Assuming $\mu=8.60$ poise, calculate the shear stress at a point 15 cm from the boundary.	4	CO1
Q2	For a turbulent flow in pipes, show that: $\frac{V \max }{V_{*}}=1.33 f^{1.33}+1$	4	CO1
Q3	What is the necessary and sufficient condition for the separation of flow?	4	CO2
Q4	For the following profile sate whether the flow is separated or not. $\frac{u}{U}=-3\left(\frac{y}{\delta}\right)+\left(\frac{y}{\delta}\right)^{2}$	4	$\mathrm{CO2}$
Q5	A rectangular channel is to carry a certain discharge at critical depth. If the section is to have a minimum perimeter, show that: $y_{c}=\frac{3 B}{4}$	4	$\mathrm{CO3}$
$\begin{gathered} \text { SECTION B } \\ (4 \mathrm{Qx} 10 \mathrm{M}=40 \text { Marks }) \end{gathered}$			
Q6	Rough, turbulent flow occurs in a pipe 0.2 m diameter conveying water. If at $\mathrm{y}=20 \mathrm{~mm}, \mathrm{u}=2 \mathrm{~m} / \mathrm{s}$ and $\frac{\partial v}{\partial y}=10.5 \mathrm{~m} / \mathrm{s}$, determine k_{0}, τ_{0}, f and U (average velocity). Assume density of water to be $1000 \mathrm{Kg} / \mathrm{m}^{3}$.	10	CO1

OR			
Q6	Derive the velocity distribution for rough pipes. How are the smooth pipes different from rough pipes in terms of ageing factor?	8+2	CO1
Q7	If the vertical component of the landing velocity of a parachute is equal to that acquired during a free fall of 2 m , find the diameter of the open parachute (hollow hemisphere) if the total weight of parachute and the person is 950 N . Assume for air at ambient conditions, Density $=1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{Cd}=1.35$	10	CO 2
Q8	An airplane weighing 65 kN , has a wing area of $27.5 \mathrm{~m}^{2}$ and a drag coefficient (based on wing area) $\mathrm{C}_{\mathrm{d}}=0.02+0.061 \times \mathrm{C}_{\mathrm{L}}{ }^{2} .$ Assume for air at ambient conditions, Density $=0.96 \mathrm{~kg} / \mathrm{m}^{3}$. Determine the following when the craft is cruising at $700 \mathrm{~km} / \mathrm{h}$: 1. Lift coefficient 2. Drag coefficient, and 3. Power to propel the craft	10	CO 2
Q9	Draw H_{2} and A_{3} profiles. Define control section and its location for upstream and downstream section.	4+4+2	CO 3
$\begin{gathered} \text { SECTION-C } \\ (2 Q \times 20 \mathrm{M}=40 \text { Marks }) \\ \hline \end{gathered}$			
Q10	a) A slightly rough brick-lined $(\mathrm{n}=0.017)$ trapezoidal channel carrying a discharge of $25.0 \mathrm{~m}^{3} / \mathrm{s}$ is to have a longitudinal slope of 0.0004 . Analyse the proportions of an efficient trapezoidal channel section having a side slope of 1.5 horizontal: 1 vertical. b) Derive the dimensions of most efficient trapezoidal channel section.	20	$\mathrm{CO3}$
OR			
Q10	A rectangular brick-lined channel $(\mathrm{n}=0.016)$ of $4.0-\mathrm{m}$ width is laid on a bottom slope of 0.0009 . It carries a discharge of $15 \mathrm{~m}^{3} / \mathrm{s}$ and the flow is nonuniform. If the depth at a Section A is 2.6 m , calculate the depth at section B, 500 m downstream of A, by using: (a) Two steps and (b) Four steps.	20	CO 3
Q11	Show that the max. wall shear stress for the laminar flow through a given pipe of diameter D and with fluid parameters μ and ρ is: $\tau_{0}=1600 \frac{\mu^{2}}{\rho D^{2}}$ b) Show that the momentum energy correction factor for laminar flow through a circular pipe is 1.33 .	10+10	$\mathrm{CO1}$

