Name:

#### **Enrolment No:**



# **UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2023**

Course: Particle and Fluid Particle Processing Program: B. Tech (Chemical Engineering)

**Course Code:** CHCE 3030

Semester: 5 Time: 03 hrs.

Max. Marks: 100

#### **Instructions:**

- 1. This is a **closed book** examination. Possessing a mobile phone or any form of communicating devices will be considered unfair means.
- 2. In case of any missing data or information, make necessary assumptions with proper reason.
- 3. Make sure you have Appendix-1, and submitted along with your answer script.

## **SECTION A (4M \times 5Q = 20 M)**

| S.<br>No. | Questions                                                                                                                                                                                                                                                                                                                                                      |   |     |          |     |             |      |        |              |     | Marks              | СО      |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|----------|-----|-------------|------|--------|--------------|-----|--------------------|---------|
| Q 1       | Write an expression of a parameter that can be used represent the (i) particle size and (ii) particle shape of an irregular shape objects or particle. $(4 - 5 \text{ lines of accurate answers is enough for Section A})$                                                                                                                                     |   |     |          |     |             |      |        |              |     | 2+2                | CO1     |
| Q 2       | Write the statement and expression of Kick's law of comminution.                                                                                                                                                                                                                                                                                               |   |     |          |     |             |      |        |              |     |                    | CO1     |
| Q 3       | Write the force balance equation for a particle settling in a stationary medium or fluid.                                                                                                                                                                                                                                                                      |   |     |          |     |             |      |        |              |     | 2+2                | CO1     |
| Q 4       | Draw a labeled schematic diagram of a ball mill.                                                                                                                                                                                                                                                                                                               |   |     |          |     |             |      |        |              | 2+2 | CO1                |         |
| Q 5       | Differentiate between a clarifier and a thickener using a table. (minimum 2 points each)                                                                                                                                                                                                                                                                       |   |     |          |     |             |      |        |              |     | 2+2                | CO2     |
|           |                                                                                                                                                                                                                                                                                                                                                                |   | SEC | CTIO     | N B | (10M        | × 4Q | 9 = 40 | M)           |     | ı                  | 1       |
| Q 6       | A slurry has a concentration of 5% by weight of solids with specific gravity = 2.4, needs to be clarified using continuous sedimentation. The feed to the clarifier is 5000 m <sup>3</sup> /day. The underflow contains 10% solids. Determine the area of the clarifier required. The batch sedimentation data is provided below.                              |   |     |          |     |             |      |        |              | 10  | CO3 [5]<br>CO4 [5] |         |
|           | Time (min)                                                                                                                                                                                                                                                                                                                                                     | 0 | 5   | 17<br>12 | 24  | <b>5</b> 40 | 70   | 250    | 1.6 Infinity |     |                    | CO4 [3] |
| Q 7       | A particle of square shape having 2.3 mm $\times$ 2.3 mm face with a thickness of <b>b</b> mm falling in water. Compute the terminal settling velocity ( $V_t$ ) in m/s. Given data: Density of particle ( $\rho_p$ ) = 3500 kg/m³, acceleration due to gravity ( $g$ ) = 9.8 m/s². Here <b>b</b> = (last digit of your roll number + 3) $\times$ 0.01 (in mm) |   |     |          |     |             |      |        |              | 10  | CO3 [5]<br>CO4 [5] |         |
| Q 8       | With the help of five (5) examples and applications, elaborate in detail about the various unique properties of nanoparticles or nanotechnology that have played important role in the improvement of modern human civilization.                                                                                                                               |   |     |          |     |             |      |        |              | 10  | CO2 [5]<br>CO3[5]  |         |

|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OR                       |                         |   |  |                    |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|---|--|--------------------|--|--|
|      | Based on similar poi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                         |   |  |                    |  |  |
|      | and hindered settling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                         |   |  |                    |  |  |
| Q 9  | With the help of suita derive an expression to Using appropriate ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CO2                      |                         |   |  |                    |  |  |
|      | for calculating the pre bed of solid particles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                         |   |  |                    |  |  |
|      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | $(20M \times 2Q = 40 N$ | * |  |                    |  |  |
| Q 10 | Powdered coal with a The particle size distributed Determine (i) effective (ii) ratio of quantity of effectiveness of an acceptable of the particle of the par | 10+5+5                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                         |   |  |                    |  |  |
|      | Compute the particle fraction). The screen a graph (Fig. 2) to answ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                         |   |  |                    |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mesh                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $D_{ m pi}$ , $\mu  m m$ | Mass retained (g)       |   |  |                    |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4760                     | 10                      |   |  |                    |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3353                     | 30                      |   |  | CO3 [5]<br>CO4 [5] |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2399                     | 40                      |   |  | CO4 [3]            |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2032                     | 60                      |   |  |                    |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 842                      | 80                      |   |  |                    |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 708                      | 70                      |   |  |                    |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 296                      | 40                      |   |  |                    |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 211                      | 30                      |   |  |                    |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 104                      | 20                      |   |  |                    |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pan                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | 10                      |   |  |                    |  |  |
| Q 11 | using a screen of 290 (i) Draw the schem consumption of the base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A ball mill is fed with fresh feed $(F)$ as $30 \times 10^3$ kg/h and the product $(P)$ is screene using a screen of 290 $\mu$ m aperture size. Oversize are recycled at a rate of $60 \times 10^3$ kg/h. Draw the schematic diagram of the whole operation. Calculate the energy consumption of the ball mill for (ii) closed circuit as well as (iii) open circuit grinding. Given data: Work index = $b$ kW hr/ton. The screen analysis data for feed, recycles. |                          |                         |   |  |                    |  |  |
|      | (oversize) and desired $b = (last digit of your)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                         |   |  |                    |  |  |

Roll number: Name:

### **Signature of the invigilator:**

0.1 1

0.01

0.1

0.2 0.4 0.8

**Table 1:** Screen analysis data for Feed (F), Recycle (R), and product  $(P_1)$  stream in a ball mill.

| Mesh size,       | Mass fra | action |       |  |                     |
|------------------|----------|--------|-------|--|---------------------|
| in μm            | F        | F R    |       |  |                     |
| -833 +589        | 0.804    | 0.868  | 0     |  |                     |
| -589 +417        | 0.026    | 0.036  | 0.051 |  |                     |
| -417 +295        | 0.019    | 0.026  | 0.125 |  |                     |
| 295 +208         | 0.021    | 0.014  | 0.19  |  |                     |
| 208 +147         | 0.017    | 0.011  | 0.131 |  |                     |
| 147 +104         | 0.113    | 0.045  | 0.503 |  |                     |
| 104              | 73       |        |       |  |                     |
| 1000             |          |        |       |  |                     |
| Drag coefficient |          |        |       |  | w = 0.125           |
| 8 10             |          |        |       |  | ψ = 0.22<br>ψ = 0.6 |
| ,                |          |        |       |  | ψ = 0.806           |

**Fig. 1:** Relationship of drag coefficient  $(C_D)$  with particle Reynolds number  $(Re_p)$  for particle with various values of sphericity  $(\psi)$ .

10

100

1000

Single particle Reynolds number, Rep

104

105

**Table 2:** Screen analysis data for Feed (F), oversize, and undersize in %.

| Mesh      | % mass<br>feed | % retained overflow | % retained underflow |  |  |
|-----------|----------------|---------------------|----------------------|--|--|
| -20 +28   | 61.19          | 80.4                | 0                    |  |  |
| -28 +35   | 10.77          | 10.4                | 11.95                |  |  |
| -35 +48   | 10.13          | 6.5                 | 21.98                |  |  |
| -48 +65   | 7.46           | 2.5                 | 23.91                |  |  |
| -65 +100  | 5.01           | 0.2                 | 18.77                |  |  |
| -100 +150 | 5.42           | 0                   | 23.39                |  |  |

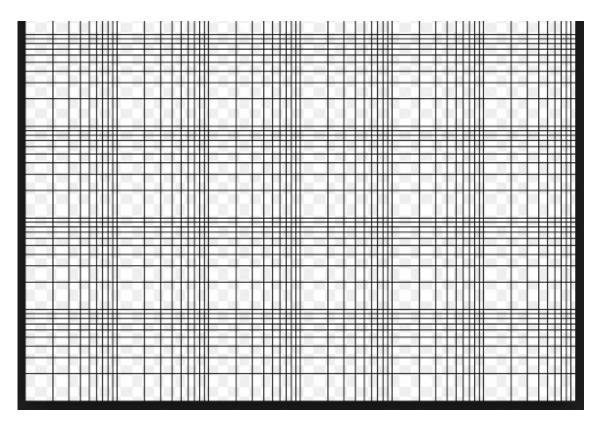



Fig. 2: Empty log-log graph paper