Name: Enrolment No:			
S. No.		Marks	CO
Section A			
Q. 1	Discuss the solid-liquid extraction equilibrium. What are the different contact strategies for solid liquid extraction?	10	CO1
Q. 2	Define inference, recirculation, cooling range and approach in cooling tower equipment.	10	CO1
Q. 3	The equilibrium distribution of A in a gas-liquid system is linear, $Y=\alpha X$; where α is a function of temperature $\ln \alpha=0.3512-\frac{26.462}{T(K)}$ The flow rate of the phases (solute-free basis) are: $G_{s}=38 \mathrm{kmol} / \mathrm{h}$ and $L_{s}=$ $49.5 \mathrm{kmol} / \mathrm{h}$. The feed gas has 8% solute in it. Calculation the temperature when absorption factor becomes unity	10	CO 2
Q. 4	The saturation enthalpy versus temperature data is important to determine the height of the cooling tower. Estimate five data points for saturation enthalpy curve. The vapor pressure of water can be calculated by the following expression $\ln p_{A}^{v}(\text { bar })=11.96481-\frac{3984.923}{T(K)-39.724}$	10	$\mathrm{CO2}$
Q. 5	A solid having 20% solute, 2% water and the rest inert is to be leached with water at a rate of 2 ton $/ \mathrm{h}$. The overflow leaving the countercurrent leaching cascade has 15% solute and no solid. The underflow carries 0.5 kg solution per kg inert independent of solution concentration. If 97% of the solute is to be recovered, determine the number of ideal stages required for this solid-liquid extraction operation	10	$\mathrm{CO3}$

