٦	. 1				
	N	•	n	n	Δ

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End semester Examination, December 2023

Programme Name: B. Tech. (CERP)

Course Name: Process Optimization

Course Code: CHCE 3020

Semester: V

Time: 3 hrs

Max. Marks: 100

Nos. of page(s) : 01

SECTION A (5X4=20 marks)

	(5X4=20 marks)				
S. No.		Marks	CO		
1	An aquarium with square bottom and open top that hold 4 cubic meters of water need to be made. You need to minimize the utilization of glass. Recognize the optimum dimensions of the aquarium.	4	CO1		
2	Recognize the minimum value of the objective function $C=4x+3y$ subjected to constraints $-3x+2y \le 6$ $3x+y \le 3$ and $y \ge 0$.	4	CO1		
3	What is regression and how is it related to optimization?	4	CO2		
Ļ	$f(x) = x^7 - 1000$ solve using Newtons method.	4	CO2		
5	Optimize the cost of a cylinder that holds 2 Lts of water where the bottom and top of the cylinder costs Rs. 3 per cm ² and the sides of the cylinder costs Rs.2 per cm ² .	4	CO2		
	SECTION B (4 X 10=40 marks)				
6	Perform Newton's second order method to minimize the function. $f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$ from the starting point $\begin{Bmatrix} -1.2 \\ 1.0 \end{Bmatrix}$.	10	CO1		
7	Consider a linear system AX=B and solve the system by using conjugate gradient method with an initial value of X as $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ A= $\begin{bmatrix} 5 & 1 \\ 1 & 8 \end{bmatrix}$ and B= $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$	10	CO1		
8	For the given function $f(x) = x_1^2 + x_2^2 + 3x_1x_2$ find the conjugate direction if the starting direction is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	10	CO2		
9	Maximize $f(x,y) = x^2y$ subject to $x^2 + y^2 = 1$ using Lagrange multipliers method.	10	CO2		
	SECTION C				
	(2 X 20=40 marks)	,			
10	The reaction-rate constant for the decomposition of a substituted dibasic acid has been determined at various temperatures as given in Table 1. Use the method of least squares to determine the activation energy E in the equation. $k = Ae^{-E/RT}$, where T is measured in degrees Kelvin.	20	CO2		
	Rate Const 168 354 735 1463 3010 6250				
11	Temp (K) 273 279 285 291 297 303 Solve the linear programming problem using simplex method. <i>Minimize</i> $Z = x_1 - 3x_2 + 2x_3$ <i>subjected to</i> $3x_1 - x_2 + 2x_3 \le 7$, $-2x_1 + 4x_2 \le 12$,				

 $-4x_1 + 3x_2 + 8x_3 \le 10 \text{ and } x_1, x_2, x_3 \ge 0$