Name:	
Enrolment No:	~UР二S

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End semester Examination, December 2023

Programme Name:	B. Tech. (CERP)	Semester $: \mathbf{V}$	
Course Name	$:$	Process Optimization	Time
Course Code	$:$	CHCE 3020 hrs	
Nos. of page(s)	$: 01$	Max. Marks $: \mathbf{1 0 0}$	

$\begin{aligned} & \text { SECTION A } \\ & (5 \mathrm{X} 4=20 \text { marks }) \end{aligned}$									
S. No.								Marks	CO
1	An aquarium with square bottom and open top that hold 4 cubic meters of water need to be made. You need to minimize the utilization of glass. Recognize the optimum dimensions of the aquarium.							4	CO1
2	Recognize the minimum value of the objective function $\mathrm{C}=4 \mathrm{x}+3 \mathrm{y}$ subjected to constraints $-3 x+2 y \leq 63 x+y \leq 3$ and $y \geq 0$.							4	CO1
3	What is regression and how is it related to optimization?							4	CO2
4	$f(x)=x^{7}-1000$ solve using Newtons method.							4	CO2
5	Optimize the cost of a cylinder that holds 2 Lts of water where the bottom and top of the cylinder costs Rs. 3 per cm^{2} and the sides of the cylinder costs Rs. 2 per cm^{2}.							4	CO2
$\begin{gathered} \text { SECTION B } \\ (4 \times 10=40 \text { marks }) \end{gathered}$									
6	Perform Newton's second order method to minimize the function. $f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}$ from the starting point $\left\{\begin{array}{c}-1.2 \\ 1.0\end{array}\right\}$.							10	CO1
7	Consider a linear system $\mathrm{AX}=\mathrm{B}$ and solve the system by using conjugate gradient method with an initial value of X as $\left[\begin{array}{l}2 \\ 1\end{array}\right\rfloor$$\mathrm{A}=\left[\begin{array}{ll} 5 & 1 \\ 1 & 8 \end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{l} 3 \\ 2 \end{array}\right]$							10	CO1
8	For the given function $f(x)=x_{1}^{2}+x_{2}^{2}+3 x_{1} x_{2}$ find the conjugate direction if the starting direction is $\left[\begin{array}{l}1 \\ 0\end{array}\right\rfloor$							10	CO2
9	Maximize $\quad f(x, y)=x^{2} y$ subject to $x^{2}+y^{2}=1$ using \quad Lagrange \quad multipliers method.							10	CO2
$\begin{gathered} \text { SECTION C } \\ (2 \times 20=40 \text { marks }) \end{gathered}$									
10	The reaction-rate constant for the decomposition of a substituted dibasic acid has been determined at various temperatures as given in Table 1. Use the method of least squares to determine the activation energy E in the equation. $k=A e^{-E / R T}$, where T is measured in degrees Kelvin.							20	CO2
	Rate Const	168	354	735	1463	3010	6250		
	Temp (K)	273	279	285	291	297	303		
11	Solve the linear programming problem using simplex method. Minimize $Z=x_{1}-3 x_{2}+2 x_{3}$ subjected to $\begin{aligned} & 3 x_{1}-x_{2}+2 x_{3} \leq 7 \\ & -2 x_{1}+4 x_{2} \leq 12 \\ & -4 x_{1}+3 x_{2}+8 x_{3} \leq 10 \text { and } x_{1}, x_{2}, x_{3} \geq 0 \end{aligned}$							20	CO2

