Name:

Enrolment No:

Semester : V

Max. Marks: 100

: 03 hrs

Time

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, Dec 2023

Programme Name:B Tech (Aerospace Engineering)Course Name: Signals & Embedded ElectronicsCourse Code: ECEG 3065

Nos. of page(s) : 03

Schematic diagrams are must in each answers

	SECTION A (5Qx4M=20Marks)		
S. No.		Mar ks	СО
Q 1	List down all different types of test signals.	4	CO1
Q 2	Draw positive and negative feedback system, derive its transfer function model	4	CO2
Q 3	List out the time response parameters in studying the dynamics of the system	4	CO3
Q 4	How the electronics plays an important role in chip memory design	4	CO 4
Q 5	List down 10 embedded system devices used in Aircraft/Spacecraft	4	CO 4
Q 6	(4Qx10M= 40 Marks) Discuss the project flow of signal embedded systems as shown in the figure		
	System Demand Analysis	10	CO4
Q 7	Compare the Type 0, Type 1, Type 2 and Type 3 of typical open loop control system gain equation, estimate the steady state errors and corresponding error constants, Tabulate it.	10	CO 2

Q 8	Reduce to SFG and derive TFM $R(s) \longrightarrow G_{1} \rightarrow G_{2} \rightarrow G_{3} \rightarrow G_{4} \rightarrow G_{4} \rightarrow C(s)$ $H_{0} \leftarrow H_{1} \leftarrow $	10	CO 2
Q 9	Derive the steady-state error for LTIV system. Discuss FVT. Apply FVT and derive the steady state error values for all kinds of input test signals to negative feedback system	10	CO 3
	SECTION-C (2Qx20M=40 Marks)		
Q 10	Discuss the stability criterion for each condition of the roots on s-plane. Derive the mathematical models too in tabulated manner.	20	CO4
Q 11	Derive the transfer function model for the Block diagram as shown below using Mason's gain algorithm $\begin{array}{c} & & & & \\ \hline & & & \\ R(s) & & & \\ Y_1 & & & \\ Y_2 & & & \\ Y_2 & & & \\ \hline & & & \\ F(s) & & & \\ F(s) & & & \\ \hline & & & \\ F(s) & & & \\ F(s) & & & \\ \hline & & & \\ F(s) & & & \\ F(s) & \\$	20	CO 3