

Enrolment No:

End Semester Examination, December 2023

Course: Flight Mechanics Semester: V Program: B.Tech Aerospace Engineering Time: 03 hrs.

Course Code: ASEG3028 Max. Marks: 100

Instructions: Assume any missing DATA.

	SECTION A 5Qx4M=20Marks		
S. No.	5QX4W=20Warks	Marks	CO
Q 1	Differentiate between gradient and isothermal layer of atmosphere.	4	CO1
Q 2	Compare different types of Drag forces acting on different parts of aircraft.	4	CO2
Q 3	Show that lift curve slope for high aspect ratio wing at compressible subsonic speed is given by		
	$\frac{a_0}{\sqrt{1 - M_{\infty}^2 + a_0/(\pi e_1 AR)}}$ Where a_0 is 2-D lift curve slope	4	CO3
Q 4	Show that unpowered glide angle of aircraft depends on L/D ratio.	4	CO4
Q5	Show that Endurance of Jet Engine aircraft is given by $E = \frac{1}{c_t} \frac{C_L}{C_D} \ln \frac{W_0}{W_1}$ Where c_t SFC, W_0 initial Weight and W_1 final Weight of Aircraft.	4	CO5
	SECTION B		
Q6	$4Qx10M=40 \text{ Marks}$ Derive the relation between geopotential altitude (h) and geometric altitude (h_G).	10	CO1
Q7	Consider an aircraft that has a wing span of 14 m, a wing area of 35 m ² , and a gross weight of 90000 N. In level flight, the lift equals the weight. The aircraft is flying at 100 m/s. Also the Oswald efficiency factor is 0.85, and the zero-lift drag coefficient is 0.021. Determine the following: a) lift coefficient b) induced drag coefficient c) total drag coefficient d) induced drag (N)	10	CO2

	e) zero-lift drag (N)		
	f) total drag (N)		
00			
Q8	Show that turn radius of an aircraft during level turn is given by	10	
	$R = \frac{V^2}{g\sqrt{n^2 - 1}}$		CO3
Q 9	An airplane weighs 150000 N and has a wing area of 42 m ² . At a flight	10	CO4
	speed of 100 m/s the engine gives thrust of 27000 N. If the aircraft drag		
	polar is $C_D=0.014 + 0.05C_L^2$. Find the angle and rate of climb at sea level		
	at 100 m/s flight speed. SECTION-C		
	SECTION-C 2Qx20M=40 Marks		
0.10			1
Q10	Consider our executive jet, W = 45000 N , S = 20 m^2 , T = 9000 N and the		
	parabolic drag polar is, $C_D=0.016 + 0.065Ct^2$.	20	004
	a) Find the max angle of climb, and the climb rate under that condition	20	CO4
	b)find the max rate of climb, and the angle of climb under that flight		
011	condition.		
Q11	An airplane weighing 15000 N is powered by a single piston engine delivering 130 HP. Its specific fuel consumption is 7.3x10 ⁻⁷ N/w.s, wing		
	span b 10 m, wing area 16.2 m ² , Cd ₀ =0.03 e=0.95, prop eff. 0.85. If this		
	airplane is loaded with 1450 N fuel weight, estimate maximum range and		
	endurance.		
	OR	20	CO5
	Consider an aircraft with the following properties: $W/S = 292 \text{ kg/m}^2$,		
	$W = 4500 \text{ kg}, S = 15m^2, C_{Lmax}, = 1.5, \mathbf{n}_{max} = 6, C_D = 0.018 + 0.064 C_L^2,$		
	and $T_{max} = 22000$ N. Find the extreme turn rate and turn radius, and the		
	speed at which they occur. Are these sustainable turn rates?		