Name: Enrolment No:			
Course: Flight Mechanics Semester: V Program: B.Tech Aerospace Engineering Time : 03 hrs. Course Code: ASEG3028 Max. Marks: 100 Instructions: Assume any missing DATA.			
SECTION A 5Qx4M=20Marks			
S. No.		Marks	CO
Q 1	Differentiate between gradient and isothermal layer of atmosphere.	4	CO1
Q 2	Compare different types of Drag forces acting on different parts of aircraft.	4	CO2
Q 3	Show that lift curve slope for high aspect ratio wing at compressible subsonic speed is given by $\frac{a_{0}}{\sqrt{1-M_{\infty}^{2}}+a_{0} /\left(\pi e_{1} \mathrm{AR}\right)}$ Where a_{0} is 2-D lift curve slope	4	$\mathrm{CO3}$
Q 4	Show that unpowered glide angle of aircraft depends on L/D ratio.	4	CO4
Q5	Show that Endurance of Jet Engine aircraft is given by $E=\frac{1}{c_{t}} \frac{C_{L}}{C_{l}} \ln \frac{W_{0}}{W_{1}} \text { Where } c_{t} \text { SFC, } \mathrm{W}_{0} \text { initial Weight and } \mathrm{W}_{1} \text { final }$ Weight of Aircraft.	4	$\mathrm{CO5}$
$\begin{gathered} \text { SECTION B } \\ 4 \mathrm{Qx10M}=40 \text { Marks } \end{gathered}$			
Q6	Derive the relation between geopotential altitude (h) and geometric altitude $\left(h_{G}\right)$.	10	CO1
Q7	Consider an aircraft that has a wing span of 14 m , a wing area of $35 \mathrm{~m}^{2}$, and a gross weight of 90000 N . In level flight, the lift equals the weight. The aircraft is flying at $100 \mathrm{~m} / \mathrm{s}$. Also the Oswald efficiency factor is 0.85 , and the zero-lift drag coefficient is 0.021 . Determine the following: a) lift coefficient b) induced drag coefficient c) total drag coefficient d) induced drag (N)	10	CO 2

	e) zero-lift drag (N) f) total drag (N)		
Q8	Show that turn radius of an aircraft during level turn is given by $R=\frac{V^{2}}{g \sqrt{n^{2}-1}}$	10	CO 3
Q9	An airplane weighs 150000 N and has a wing area of $42 \mathrm{~m}^{2}$. At a flight speed of $100 \mathrm{~m} / \mathrm{s}$ the engine gives thrust of 27000 N . If the aircraft drag polar is $C_{D}=0.014+0.05 C_{L}^{2}$. Find the angle and rate of climb at sea level at $100 \mathrm{~m} / \mathrm{s}$ flight speed.	10	CO4
$\begin{gathered} \text { SECTION-C } \\ \text { 2Qx20M=40 Marks } \\ \hline \end{gathered}$			
Q10	Consider our executive jet, $\mathrm{W}=45000 \mathrm{~N}, \mathrm{~S}=20 \mathrm{~m}^{2}, \mathrm{~T}=9000 \mathrm{~N}$ and the parabolic drag polar is, $\mathrm{C}_{\mathrm{D}}=0.016+0.065 C_{L}{ }^{2}$. a) Find the max angle of climb, and the climb rate under that condition b)find the max rate of climb, and the angle of climb under that flight condition.	20	CO4
Q11	An airplane weighing 15000 N is powered by a single piston engine delivering 130 HP . Its specific fuel consumption is $7.3 \times 10^{-7} \mathrm{~N} / \mathrm{w} . \mathrm{s}$, wing span b 10 m , wing area $16.2 \mathrm{~m}^{2}, \mathrm{Cd}_{0}=0.03 \mathrm{e}=0.95$, prop eff. 0.85 . If this airplane is loaded with 1450 N fuel weight, estimate maximum range and endurance. OR Consider an aircraft with the following properties: W/S $=292 \mathrm{~kg} / \mathrm{m}^{2}$, $W=4500 \mathrm{~kg}, S=15 \mathrm{~m}^{2}, C_{L \max },=1.5, \mathbf{n}_{\max }=6, C_{D}=0.018+0.064 C_{L}^{2}$, and $\mathrm{T}_{\max }=22000 \mathrm{~N}$. Find the extreme turn rate and turn radius, and the speed at which they occur. Are these sustainable turn rates?	20	$\mathrm{CO5}$

