	-			
N	9	n	1	•

Enrolment No:

End Semester Examination, December 2023

Program Name: B. Tech. APE UP

Course Name: Reservoir Engineering I

Course Code: PEAU 3002

Semester: V

Time: 3 hrs.

Max. Marks: 100

Instructions: All questions are compulsory. Internal choices are mentioned in Section B and C.

- a. Answers must carry supporting material such as equations and diagrams.
- b. Abbreviations used in the questions are standard and have their usual meaning.
- **c.** Make appropriate assumptions where data is not supplied.

Section A (5Qx4M=20Marks)

S. No.		Marks	CO
Q 1	Differentiate total porosity and effective porosity with suitable figures and formulas. Write down the applications of porosity.	4	CO1
Q 2	Define permeability and write down the units of permeability in both SI system and practical system. List out the various factors affecting permeability.	4	CO1
Q 3	Illustrate P-T diagram of black oil, condensate, wet gas and retrograde condensate reservoir with neat sketch.	4	CO2
Q 4	Define bubble point pressure and specific gravity. Calculate the API gravity of water at 60° F and 14.6 psi.	4	CO2
Q 5	Explain different types of capillary pressure and relative permeability with suitable equation.	4	CO3
	Section B		
	(4Qx10M=40Marks)		
Q 6	 (a) Discuss the grain density & porosity of a core sample. Determine the porosity & grain density of the core. Diameter=3.8cm, length=10.0cm, dry weight of core=275gm weight of 100% brine-saturated core=295gm, brine density=1.05g/cm³. (b) Calculate the permeability of an oil zone with a connate-water saturation and average porosity of 45% and 32%, respectively by using Timur and Morris and Biggs equations. 		CO1
Q 7	 (a) Derive Darcy's law and illustrate the assumptions made with suitable equations and figures. (b) Calculate the permeability of the core. The available data are- air flow rate=30cm³/sec, inlet pressure=1psig, outlet pressure=1atm, air viscosity at elevated temperature=0.0198cp; length=20inch, diameter=2.4inch. 	10 (5+5)	CO2

Q 8	(a) Discuss fluid Con	npressibility	and calculate	the porosity a	nt 4500 psi.			
	$\begin{array}{l} \textbf{Data Given:} \\ c_f = 10 \ X 10^{-6} \\ original \ pressure = 5000 \ psi \\ original \ porosity = 18\% \\ current \ pressure = 4500 \ psi \\ \end{array}$ (b) Compare oil formation volume factor and gas formation volume factor varies with reservoir pressure. Explain with neat diagram.						10 (5+5)	CO3
Q 9	Discuss fluid saturati average saturations v saturations.	_						
	Calculate average measurements:	oil and co	onnate water	saturation f	from the fol	lowing		
	Comple	h. ft	4.0 /	S o 0 /	Cruca 0/	1	10	GO4
	Sample 1	h _i , ft 1.0	φ, % 10	So, %	Swc, %		10	CO4
	2	1.5	12	77	23			
	3	1.0	11	79	21			
	4	2.0	13	74	26			
	5	2.1	14	78	22			
	6	1.1	10	75	25			
			SECTION (2Qx20M=4					
Q 10	(a) Discuss importan		ssification of	drive mecha	nism in a res	ervoir.		
	Explain each driv	e mechanisi	n with suitable	figures.				
	(b) Explain exponer	(b) Explain exponential decline curve and calculate the amount of oil produced						CO5
	after one year if a well has decline from 100 BOPD to 95 BOPD during a one-						(10+10)	003
	month period. Then predict the rate after 11 more months & after 22.5 months							
		F						
Q 11	 (a) Discuss assumptions and limitations of MBE. Describe sources of data use in MBE. (b) Cumulative oil production for our example reservoir was 14.73 ×10⁶ STB at the time when reservoir pressure was 900 psig. At the same time cumulative production of solution gas was 4.05 ×10⁹ SCF. Calculate the reservoir volume occupied by released gas. 							
							20 (10+10)	CO6
	Data Given:							
	N. 00 46 106 [CITP]							
	N = 90.4	6×106 [STI	3]					

Rsi at 1225 psig = 230 [SCF/STB] Rs at 900 psig = 169 [SCF/STB] Bg at 900 psig = 0.002905 [RB/SCF] **OR**

- (a) Discuss different oil and gas reserves estimation methods and explain 1P, 2P & 3P Reserves in detail.
- (b) Given the following data of gas field,

Area = 160 acres

Net productive thickness = 40 ft

Initial reservoir pressure = 3250 psia

Porosity = 22%

Connate water = 23%

Initial gas FVF = 0.00533 ft3/SCF

Gas FVF at 2500 psia = 0.00667 ft3/SCF

Gas FVF at 500 psia = 0.03623 ft3/SCF

 S_{gr} after water invasion = 34%

Calculate

- 1. Initial gas in place
- 2. Gas in place after volumetric depletion to 2500 psia
- 3. Gas in place after volumetric depletion to 500 psia
- 4. Gas in place after water invasion at 3250 psia
- 5. Gas in place after water invasion at 2500 psia
- 6. Gas in place after water invasion at 500 psia
- 7. Gas reserve by volumetric depletion to 500 psia
- 8. Gas reserve by full water drive, i.e., at 3250 psia
- 9. Gas reserve by partial water drive, i.e., at 2500 psia