| Name:
Enrolment No: | | WUPES | | | | | | | | | |------------------------------------|------------------------------|------------------------|--|--|--|--|--|--|--|--| | | | UNIVERSITY OF TOMORROW | | | | | | | | | | | UNIVERSITY OF PETROLEU | JM AND ENERGY STUDIES | | | | | | | | | | End Semester Examination, Dec 2023 | | | | | | | | | | | | Course | : Reservoir Engineering - II | Semester : V | | | | | | | | | | Name: | | | | | WUPES | | | | | | | | |-------------------------------------|---|--|------------------------|----------------------|--------------|-------------------|---------|-----|--|--|--|--| | Enrol | ment No: | | | | 6 | UNIVERSITY OF TOM | ORROW | | | | | | | | UNIVERS | SITY OI | F PETRO | LEUM A | ND ENE | RGY STUI | DIES | | | | | | | | | End | Semester | Examinati | on, Dec 20 | 23 | | | | | | | | Cour | se : Rese | ervoir Engir | neering - II | | ŕ | Semester | : V | | | | | | | U | | ech (APE G | AS) | | | Time | : 3hr | | | | | | | | | U 3005 | | | | Max. Mark | ks: 100 | | | | | | | | of page(s) : 2
uctions: Assume a | any data mis | ssin a | | | | | | | | | | | 111511 | | • | ssing
datasheet use | rd. | | | | | | | | | | SNo | mach an | <u> </u> | ECTION A (| | ·ke) | | Marks | СО | | | | | | $\frac{\mathbf{Q} 1}{\mathbf{Q} 1}$ | Define a volume | | | 57 14 -20 Mai | . No) | | 4 | CO1 | | | | | | $\frac{Q}{Q}$ | Define a volume | | | , | | | 4 | CO1 | | | | | | $\frac{Q^2}{Q^3}$ | Define abnormal | | <u> </u> | • | | | 4 | CO2 | | | | | | Q J | | | | and list th | ne variables | included in it | | CU2 | | | | | | Q 4 | Define economic limit production rate and list the variables included in its estimation. | | | | | | | | | | | | | Q 5 | | ificance of | the Buckley- | everett eaus | ution | | 4 | CO4 | | | | | | Q S | Mention the significance of the Buckley-Leverett equation. SECTION B (4*10=40 Marks) | | | | | | | | | | | | | | Calculate origina | al oil in plac | | | | olumetric under | _ | | | | | | | | saturated reservo | - | | • | | | | CO1 | | | | | | Q 6 | | | | | | | | | | | | | | | 5000 psi; B_{ti} -1.355 RB/STB; B_t at 3600 psi - 1.375 RB/STB; N_p - 1.25 MM STB; Connate water saturation - 0.2; B_w at 3600 - 1.04 RB/STB; W_p - 32,000 STB; W_e - | | | | | | | | | | | | | | 0; c_w - 3.6 * 10 ⁻⁶ | | | | , P | , , , | | | | | | | | | A gas well prod | | | | in Ward C | ounty, Texas, i | s | | | | | | | | tested periodical | ly and the fo | ollowing data | is collected: | | | | | | | | | | Q 7 | P _R (psi) | 5608 | 4910 | 4537 | 4055 | 3631 | 10 | CO2 | | | | | | Ų / | Z | 1.0045 | 0.9705 | 0.9525 | 0.9300 | 0.9102 | 10 | CO2 | | | | | | | Gp (MCF) | 144,941 | 2,282,721 | 5,338,601 | 9,989,696 | 13,443,654 | | | | | | | | | Calculate the ori | | 1 | | | | | | | | | | | | Derive an expression for maximum possible oil flow rate through a well, which | | | | | | | | | | | | | | penetrates a depth ' D_t ' into a oil zone of thickness ' h ' during water coning. | 0.0 | | | | | | | | | | | | | | Q 8 | ρ _ο Oil | | | | | | | | | | | | | | h h _ρ E E Pρο Oil | Following is the | Following is the data of immiscible displacement in a reservoir of 200m X 200m | | | | | | | | | | | | | · · | | | | | | | | | | | | | | pattern: Porosity -20% ; oil saturation -65% ; residual oil saturation -25% ; mobility ratio -1.32 ; pay thickness -5 zones of 1 m each; permeability of zones $-$ | | | | | | | | | | | | | Q 9 | 310, 187, 432, 187 and 64 md. Calculate: | | | | | | | CO4 | | | | | | | a. Fractional flow of water | | | | | | | | | | | | | | | | 's method if t | 1 1 1 | 1.4 1. | · ord 1 | | | | | | | | SECTION C (2*20=40 Marks) | | | | | | | | | | | | | | |---------------------------|--|------|------|------|------|------|------|------|------|------|----|------------|-----| | | a. Derive an expression for production 'q' bbl at time 't' from well initially producing ' q_i ' bbl of oil by exponential decline analysis. | | | | | | | | | | y | | | | Q10 | b. Following is the oil production data recorded from well opened in Jan 2015. | | | | | | | | | | | | | | | Month | Jan | Jul | Dec | Jul | Jan | Jul | Feb | Jun | Jan | | | CO3 | | | Year | 2015 | 2015 | 2015 | 2016 | 2017 | 2017 | 2018 | 2018 | 2019 | 20 | 20 | | | | Production (bbl) | 1700 | 1511 | 1405 | 1240 | 1100 | 1003 | 890 | 831 | 736 | | 4 0 | | | | Based on the exponential decline analysis estimate | | | | | | | | | | | | | | | i. The decline percentage | | | | | | | | | | | | | | | ii. The production rate in Jan 2020 | | | | | | | | | | | | | | | iii. The cumulative oil production from Jan 2015 through Jan 2020 | | | | | | | | | | | | | | | a. Derive an expression for velocity of a plane of constant water saturation | | | | | | | | | | n | 20 | CO4 | | Q11 | displacing oil through linear system by Buckley-Leverett approach. | | | | | | | | | | | | | | | b. Derive an expression for evaluating oil recovery during an immiscible | | | | | | | | | le | | | | | | displacement from a stratified reservoir by Stile's approach. | | | | | | | | | | | | |