Name: Enrolment No:		WUPES								
		UNIVERSITY OF TOMORROW								
	UNIVERSITY OF PETROLEU	JM AND ENERGY STUDIES								
End Semester Examination, Dec 2023										
Course	: Reservoir Engineering - II	Semester : V								

Name:					WUPES							
Enrol	ment No:				6	UNIVERSITY OF TOM	ORROW					
	UNIVERS	SITY OI	F PETRO	LEUM A	ND ENE	RGY STUI	DIES					
		End	Semester	Examinati	on, Dec 20	23						
Cour	se : Rese	ervoir Engir	neering - II		ŕ	Semester	: V					
U		ech (APE G	AS)			Time	: 3hr					
		U 3005				Max. Mark	ks: 100					
	of page(s) : 2 uctions: Assume a	any data mis	ssin a									
111511		•	ssing datasheet use	rd.								
SNo	mach an	<u> </u>	ECTION A (·ke)		Marks	СО				
$\frac{\mathbf{Q} 1}{\mathbf{Q} 1}$	Define a volume			57 14 -20 Mai	. No)		4	CO1				
$\frac{Q}{Q}$	Define a volume			,			4	CO1				
$\frac{Q^2}{Q^3}$	Define abnormal		<u> </u>	•			4	CO2				
Q J				and list th	ne variables	included in it		CU2				
Q 4	Define economic limit production rate and list the variables included in its estimation.											
Q 5		ificance of	the Buckley-	everett eaus	ution		4	CO4				
Q S	Mention the significance of the Buckley-Leverett equation. SECTION B (4*10=40 Marks)											
	Calculate origina	al oil in plac				olumetric under	_					
	saturated reservo	-		•				CO1				
Q 6												
	5000 psi; B_{ti} -1.355 RB/STB; B_t at 3600 psi - 1.375 RB/STB; N_p - 1.25 MM STB; Connate water saturation - 0.2; B_w at 3600 - 1.04 RB/STB; W_p - 32,000 STB; W_e -											
	0; c_w - 3.6 * 10 ⁻⁶				, P	, , ,						
	A gas well prod				in Ward C	ounty, Texas, i	s					
	tested periodical	ly and the fo	ollowing data	is collected:								
Q 7	P _R (psi)	5608	4910	4537	4055	3631	10	CO2				
Ų /	Z	1.0045	0.9705	0.9525	0.9300	0.9102	10	CO2				
	Gp (MCF)	144,941	2,282,721	5,338,601	9,989,696	13,443,654						
	Calculate the ori		1									
	Derive an expression for maximum possible oil flow rate through a well, which											
	penetrates a depth ' D_t ' into a oil zone of thickness ' h ' during water coning.											
0.0												
Q 8	ρ _ο Oil											
	h h _ρ E E Pρο Oil											
	Following is the	Following is the data of immiscible displacement in a reservoir of 200m X 200m										
	· ·											
	pattern: Porosity -20% ; oil saturation -65% ; residual oil saturation -25% ; mobility ratio -1.32 ; pay thickness -5 zones of 1 m each; permeability of zones $-$											
Q 9	310, 187, 432, 187 and 64 md. Calculate:							CO4				
	a. Fractional flow of water											
			's method if t	1 1 1	1.4 1.	· ord 1						

SECTION C (2*20=40 Marks)													
	a. Derive an expression for production 'q' bbl at time 't' from well initially producing ' q_i ' bbl of oil by exponential decline analysis.										y		
Q10	b. Following is the oil production data recorded from well opened in Jan 2015.												
	Month	Jan	Jul	Dec	Jul	Jan	Jul	Feb	Jun	Jan			CO3
	Year	2015	2015	2015	2016	2017	2017	2018	2018	2019	20	20	
	Production (bbl)	1700	1511	1405	1240	1100	1003	890	831	736		4 0	
	Based on the exponential decline analysis estimate												
	i. The decline percentage												
	ii. The production rate in Jan 2020												
	iii. The cumulative oil production from Jan 2015 through Jan 2020												
	a. Derive an expression for velocity of a plane of constant water saturation										n	20	CO4
Q11	displacing oil through linear system by Buckley-Leverett approach.												
	b. Derive an expression for evaluating oil recovery during an immiscible									le			
	displacement from a stratified reservoir by Stile's approach.												