Name: Enrolment No:			
$\begin{gathered} \text { SECTION A } \\ \text { (5Qx4M=20Marks) } \end{gathered}$			
S. No.		Marks	CO
Q 1	For a symmetric tensor T and a vector v , show that T.v = v.T.	4	CO1
Q 2	Explain in brief: (a) Empirical Models, (b) Micromechanical Models, (c) Phenomenological Models.	4	CO2
Q 3	Define the term stretches and state various strain measures used in large deformation problems.	4	CO2
Q 4	Explain Bauschinger's effect and state under conditions it is used.	4	CO3
Q 5	Explain the difference between Isotropic hardening and Kinematic hardening of materials.	4	CO2
$\begin{gathered} \text { SECTION B } \\ \text { (4Qx10M=40 Marks) } \end{gathered}$			
Q 6	Show that a dot product of a tensor and a vector given as T.v is also a vector.	10	CO2
Q 7	Explain the following constitutive models with appropriate examples using the figure provided below.	10	$\mathrm{CO3}$
Q 8	Explain the following terms with respect to the Viscoelastic behaviour: (a) Creep Compliance, (b) Relaxation Modulus, (c) Phase lag, Storage Modulus and Loss Modulus.	10	$\mathrm{CO4}$
Q 9	Consider a state of stress at a following point:	10	CO3

	70 80 50 80 -60 40 50 40 30 Consider another set of co-ordinate axes in which z^{\prime} co-incides with z and z^{\prime} is rotated counter clockwise by 40° from the x axis. Determine the stress components in new co-ordinate system.		
$\begin{gathered} \text { SECTION-C } \\ \text { (2Qx20M=40 Marks) } \end{gathered}$			
Q 10	A rectangular beam of size $200 \mathrm{~mm} \times 300 \mathrm{~mm}$ has normal strain due to bending varying as $\varepsilon_{\mathrm{x}}=1.3 \times 10^{-5} \mathrm{y}$, where, y is in mm . Write the expression for normal stress σ_{x}, as a function of y and plot the normal stress distribution across the section if the beam is made from: (a) An elastic-plastic material having an yield stress $\sigma_{y}=250 \mathrm{MPa}$ and a modulus of Elasticity, $\mathrm{E}=200 \mathrm{GPa}$, (b) A bilinear material having yield stress $\sigma_{y}=250 \mathrm{MPa}$ and Modulus of Elasticity $\mathrm{E}_{1}=200$ GPa and $\mathrm{E}_{2}=70 \mathrm{GPa}$.	20	$\mathrm{CO4}$
Q 11	The displacement component in a strained body are: $u=0.01 y^{2} z+0.25 x y z, v=0.03 x^{2} y+0.04 x^{2} y z, w=0.25 x y z-0.05 x^{2} z^{2}$. Determine the strain tensor, rotation tensor, and angle of rotation at the point (-$1,-1,3)$. OR Derive the expressions for $\mu^{\prime}(\omega)$ and $\mu^{\prime \prime}(\omega)$ based on the Maxwell model of Viscoelastic Solid.	20	$\mathrm{CO3}$

