Name:

Enrolment No:

UPES

End Semester Examination, December 2023

Course: Computational Tools: Atomistic Simulations Techniques Semester: V

Program: B.Sc (H) Physics Time : 03 hrs.
Course Code: PHYS3028 Max. Marks: 100

Instructions: All questions are compulsory

	SECTION A		
	(5Qx4M=20Marks)		
S. No.		Marks	CO
Q 1	 (i) Write differences between list and tuples. (ii) Explain the difference between 'append ()' and 'extend ()' methods. 	2+2	СОЗ
Q 2	Write a python program to check Armstrong number.	4	CO3
Q 3	State Hohenberg Kohn theorems.	2+2	CO2
Q 4	State variational principle.	4	CO1
Q 5	Discuss variation of DOS for a non-relativistic particle in two-dimensional motion.	4	CO2
	SECTION B		•
	(4Qx10M= 40 Marks)		
Q 1	 (i) Write a python program to check whether a number is prime or not. (ii) Write a python program to find area of a circle. 	5+5	CO3
Q 2	(i) Give the mathematical description of DFT. (ii) Explain Kohn Sham equations.	5+5	CO2
Q 3	 (i) State and prove crystallographic restriction theorem. (ii) Determine Miller indices of plane that makes an intercept 3 A°, 4A° & 5A° on coordinate axis of orthorhombic crystal with a:b:c = 1:2:5. 	5+5	CO2
Q 4	(i) What are the differences between crystalline and amorphous solids?(ii) List seven Bravais lattices in 3D with their characteristics.	3+7	CO2
	SECTION-C		•
	(2Qx20M=40 Marks)		
Q 1	(i) State and prove Hellman Feynman principle.	10+10	CO1

	(ii)	With the help of Hellman Feynman principle prove that the average kinetic energy of a harmonic oscillator is equal to its average potential energy.		
Q 2	(i) (ii)	Write a python program to calculate factorial of a number. Write a python program for temperature converter (°C to °F)	10 10	
	(i) (ii)	OR What are the common built-in data types in Python? Explain with examples. What is the purpose of "for" and "while" loop in python and how it is used? Explain with examples.	10 10	CO3